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Viterbi Algorithm to Predict Aerodynamic Control Laws of an Aircraft

Objective of the experiment: To build a computational stochastic model based on Markov chains to
predict the most likely sequence of events (Markovian states) using the Viterbi algorithm.

Learning concepts: Conditional probability, Markov property, stochastic optimization, dynamic pro-
gramming.

Theoretical Concepts

I. Introduction & overview: We will consider a certain stochastic process with the following K
dimensional state space S = {s1, s2, ..., sK}. Associated with this process is a T dimensional ob-
servation sequence Y = {y1, y2, ..., yT } from amongst a possible N dimensional observation space
O = {o1, o2, ..., oN}. Note: yn ∈ O. Further, consider an initial probability distribution given by
Π = {π1, π2, ..., πK}. The probability transition matrix P is a K ×K matrix with entries

pij(t) := probability of transitioning from state si to state sj = Prob(xt = sj
∣∣xt−1 = si),

and the emission matrix E is a K ×N matrix with entries

eij(t) := probability of observing oj from state si = Prob(yt = oj
∣∣xt = si).

Succinctly, we will often write si ≡ i and oj ≡ j where it must be understood that xt = i refers to
the random variable xt taking the state si and yt = j refers to the random variable yt being assigned
the observable oj . The goal of the prediction algorithm is to forecast the most likely sequence of states
(events) X = {x1, x2, ..., xT }, where xn ∈ S given a prescribed sequence of observables Y, i.e. we
need to compute

argmaxXProb(Y,X) = argmaxXProb(X
∣∣Y)Prob(Y) = argmaxXProb(Y

∣∣X)Prob(X).

Here argmax
(
f(x)

)
returns the value of x at which the function f(x) attains its maximum. In addition

to this main goal of the project that uses the Viterbi Algorithm, we will also use the Forward algo-
rithm to calculate the probability of a given sequence of observations. This also has useful practical
implications.

Let us realize this in the form of an example. Assume that your friend is living in another country and
the weather on a particular day in that country follows a Hidden Markovian model (HMM). ’Hidden’
because the Markovian states (here, the weather states) are not directly observable. For convenience,
assume that there are 3 possible weather states, S = {rainy, cloudy, sunny}, we call this the state space.
Let’s say, you’re given what activity your friend does on a given day (which your friend will communi-
cate to you about). This information is what you can directly observe or know. The activities your friend
decides to do depends only on the type of weather on a given day. The set of all activities he does comes
from the observation space which for this case we assume to be O = {read, shop, play}. Now, based on
what activity he does every day for a given number of days, you’ll find the most likely sequence of the
weather states (hidden states) that occurred during the given days. That is say if for 5 days his sequence
of activities was Y = {read, read, shop, play, shop}, then what’s the most likely weather sequence for
these 5 days? Viterbi algorithm would do this for you.

In addition to this task you’ll also find the probability of a given sequence of your friend’s activities.
That is say, you want to know what is the probability that the sequence of activities of your friend for 5
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consecutive days is Y = {read, read, shop, play, shop}. The Forward algorithm would do this for you.
While the pseudo code along with the essential calculations for the Viterbi algorithm would be given to
you, you’re expected to use the construction of the Forward algorithm given in this project to design a
code for the same, from scratch.

II. Construction and essential calculations of the Viterbi algorithm: In what follows, we will
fix the notation Prob(X1 = x1) ≡ Prob(x1) ≡ π1. Note that if T = 2, then

Prob(Y,X) ≡ Prob(y1, y2, x1, x2)

= Prob(y1, y2, x2
∣∣x1)Prob(x1)

= Prob(y1, y2
∣∣x2, x1)Prob(x2

∣∣x1)Prob(x1)

= Prob(y1
∣∣y2, x2, x1)Prob(y2

∣∣x2, x1)p12π1
= Prob(y1

∣∣x1, x2, y2)Prob(y2
∣∣x2)p12π1

= Prob(y1
∣∣x1)Prob(y2

∣∣x2)p12π1 (1)

In general, we have

Prob(Y,X) ≡ Prob(Y = y1, y2..., yT ,X = x1, x2..., xT )

= Prob(x1)︸ ︷︷ ︸
π1

Prob(y1
∣∣x1)︸ ︷︷ ︸

e1y1

Prob(x2
∣∣x1)︸ ︷︷ ︸

p12

Prob(y2
∣∣x2)︸ ︷︷ ︸

e2y2

· · · · · ·Prob(yT
∣∣xT )︸ ︷︷ ︸

eTyT

(2)

The Viterbi algorithm involves recursively computing the Viterbi entries Vk,t

Vk,t := maxProb
(
(y1, ..., yt), (x1, ..., xt = sk)

)
= probability of the best (most likely) sequence of states (ending with state k, i.e. xt = sk)

corresponding to the sequence of observables (y1, ..., yt).

Recursive computation of Vk,t:

By comparing the terms on the right-hand side of eq. (2) and the definition of the Viterbi entries above,
we see that Vk,t can be obtained recursively and consequently using the argmax function, we can find the
most likely sequence of events. The algorithm includes the calculation of the following three important
terms.

• Vk,t = max
α∈S

(
Prob(yt = j

∣∣xt = sk)pαkVα,t−1

)
= max

α∈S

(
ekjpαkVα,t−1

)
with Vk,1

set
= Prob(y1 = om

∣∣x1 = sk)πk = ekmπk, for all k = 1, 2, . . . ,K and t = 1, 2, . . . , T and

• xT = argmax
α∈S

(
Vα,T

)
.

• xt−1 = back pointer(xt, t) = value of xt−1 used to compute Vk,t for all t = 2, 3, . . . , T .
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Software Implementation

Pseudo-code of the Viterbi algorithm:

INPUT: S,Π,E,P and Y.

Part I: Initialization.
for each i of K states

viterbi prob(i,1) = πi ∗ eiy1
viterbi path(i,1) = 0

end for

Part II: Compute Viterbi probabilities and Viterbi path.
for each j of T-1 observations starting with T=2

for each i of K states
viterbi prob(i,j) = max

α∈S

(
eiyj ∗ pαi∗viterbi prob(α, j − 1)

)
viterbi path(i,j) = argmax

α∈S

(
eiyj ∗ pαi∗viterbi prob(α, j − 1)

)
end for

end for
xT = szT where zT := argmax

α∈S

(
viterbi prob(α, T )

)
The appearance of eij in the computation of viterbi path(i,j) is unnecessary
because it is non-negative and independent of α (so you may choose to skip it).

Part III: Re-tracking the most likely path X.
for each j of T-1 observations from T to 2

xj−1 = szj−1 where zj−1 =viterbi path(zj , j)
end for

OUTPUT: X = {x1, x2, ..., xT }, Prob(Y,X) = max
α∈S

(
viterbi prob(α, T )

)
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III. Construction and essential calculations of the Forward algorithm:

For convenience consider the state space S = {s1, s2} representing the Hidden Markov states and
the observation space O = {o1, o2}. We are interested in calculating the probability of a given observed
sequence, say Y = {y1, y2, y3} given the parameters of our HMM. Denote length (Y) = T , here T = 3

Given the observed sequence, it’s clear that there are 8 possible sequences of Markov States that can
produce this sequence (since length (S) = 2 and each observation can be associated with these 2 states).
Rather than calculating the individual joint probabilities of all 8 possibilities of the state sequences and
the given observed sequence and then adding them up, we use the Forward algorithm to reduce the com-
plexity of the problem.

Prob(Y = {y1, y2, y3})

F3(s1) F3(s2)

F2(s1) F2(s2) F2(s1) F2(s2)

F1(s1) F1(s2) F1(s1) F1(s2) F1(s1) F1(s2) F1(s1) F1(s2)

Here Ft(sk) denotes the probability of occurrence of the state sk at the tth position of Markov chain
sequence and that sequence {y1, y2, · · · , yt} is followed till tth position.

There are three stages in the forward algorithm:

1. Initialization:
F1(si) = πieiy1

For instance, in our example, we have the following initial probabilities:

F1(s1) = π1e1y1 and F1(s2) = π2e2y1

2. Recursion:

Ft(si) =
k∑

j=1

Ft−1(sj)pjieiyt

For instance in our example, we have

F2(s1) = F1(s1)p11e1y2 + F1(s2)p21e1y2

In the same way, for other values of t, Ft(sk) can be written.

3. Termination:

Prob(Y = {y1, y2, · · · , yT }) =
k∑

j=1

FT (sj)

So, in our example, we are interested in

Prob(Y = {y1, y2, y3}) = F3(s1) + F3(s2)
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IV. Questions: Implement the above algorithms on PYTHON (or MATLAB) and use your program to
answer the following set of questions.

1. Example: In the example stated earlier on predicting the Markovian weather states assume
the initial weather distribution Π = (0.35, 0.25, 0.4), the probability transition matrix P =Ñ

0.4 0.2 0.4
0.2 0.5 0.3
0.3 0.6 0.1

é
, where state 1 is rainy, state 2 is cloudy and state 3 is sunny, and the proba-

bility emission matrix E =

Ñ
0.8 0.1 0.1
0.2 0.5 0.3
0.4 0.2 0.4

é
, where the columns (observations) are labeled in

order of reading, playing and shopping, respectively and rows (weather states) are labeled in order
of rainy, cloudy and sunny respectively. Now, answer the following questions:

(a) What is the most likely weather sequence for the last 5 days given that the activities of your
friend for the last 5 days are: ’read’, ’read’, ’shop’, ’play’, ’shop’?

(b) What is the probability that the activities of your friend for 5 consecutive days are
Y = {read, read, shop, play, shop}?

2. Main Problem: Aircraft sensor data from the Airbus A330 is used to predict the flight character-
istics and accordingly modify control inputs. One such flight characteristic is pitch up and pitch
down motions (observation state variables) measured by the angle of attack sensors. Any error in
the pitch measurements may inadvertently affect the primary flight control laws (state variables)
and have major consequences on the aerodynamic performance of the plane. In any aircraft there
are three primary control laws, viz., normal, alternate, and direct, each of which demands dis-
tinct inputs by the pilot and the on-board flight computer system. The flight envelope and failure
protection modes are also distinctly different depending on the type of control law governing the
flight at any given instant, e.g., normal law may have automated low-speed anti-stall protection
whereas the same may not be available while the aircraft is operated under direct law. Therefore,
accurate real-time prediction of the prevailing control law is essential for continuing safe flights
and is monitored carefully by the company at the Airbus engineering systems headquarters. From
the Airbus database, we have the probability transition matrix P, (where state 1 is normal, state 2
is alternate and state 3 is direct), probability emission matrix E (where the columns or observa-
tions are labeled in order of up and down and rows or aircraft control laws are labeled in order of
normal, alternate and directly respectively) and the initial probability distribution of the aircraft
control laws Π .

P =

Ñ
0.35 0.45 0.2
0.28 0.32 0.4
0.75 0.1 0.15

é
,E =

Ñ
0.1 0.9
0.6 0.4
0.7 0.3

é
and Π = {0.2, 0.3, 0.5}

Using this solve the following problems:

(a) If the company receives the following sequence of pitch measurements at 5-minute intervals,
what is the most likely sequence of aircraft control laws that would be activated during the
same instant of time?
Pitch data: ’up’, ’down’, ’down’, ’down’, ’up’, ’up’, ’up’, ’down’, ’up’, ’down’.

(b) What is the probability that the pitch data in eight consecutive 5-minute intervals are:

i. Y = {up, up, up, up, up, up, up, up}
ii. Y = {down, up, down, up, down, up, down, up}

iii. Y = {up, down, up, down, up, down, up, down}
iv. Y = {up, up, down, up, down, down, down, up}
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v. Y = {down, down, down, down, down, down, down, down}?

(c) From the answers obtained in (2b), what possible changes can be made in the HMM param-
eters (P, E, Π) such that:

i. any two observation sequences of the same length containing an equal number of ups
and downs have the same probability (for example, probability of sequence (2(b)ii) is
equal to the probability of sequence (2(b)iii)? ,

ii. for a given length of an observation sequence, the probabilities of all possible observa-
tion sequences are equal?

3. (a) Consider the following emission matrix in the HMM with P and Π in (2):

E =

Ñ
0.65 0.35
0.82 0.18
0.73 0.27

é
.

i. Using appropriate justification, comment on what action (’landing’ or ’take-off’ or
’cruising horizontally’) the aircraft is most likely performing, given the HMM parame-
ters?

ii. Now consider a new emission matrix, Ẽ by swapping the columns of E. Given that the
aircraft is in the take-off action, comment on any potential anomalies in the aircraft per-
formance based on Ẽ.

(b) Given a Markovian state at a particular time instant (say, ’alternate’ at time ’t’, in the HMM
in (2)), construct an algorithm (both theoretically and through PYTHON (or MATLAB) im-
plementation) to compute the probability of the company receiving the following pitch data
in the next eight 5-minute intervals (starting from t1 = t+ 5, t2 = t+ 10, · · · ).
Pitch data: ’down’, ’down’, ’down’, ’up’, ’up’, ’up’, ’down’, ’up’
(Note: Assume the same parameters (P, E, Π) for the HMM in question (2))
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