Lab Worksheet (Week-7)

Row-Reduced Echelon Form

1. Create a code in Python that can be called as a function (name it $r_{-} r_{-} e_{-} f$) that gives the row reduced echelon form of any given matrix, its rank, and the pivotal columns.
Find the rref of A and B using the above mentioned function:

$$
A=\left[\begin{array}{ccc}
1 & 3 & 4 \\
5 & -9 & -8 \\
4 & 7 & 8
\end{array}\right] \text { and } B=\left[\begin{array}{ccc}
1 & 6 & 7 \\
-1 & -5 & 1 \\
1 & 9 & 0
\end{array}\right]
$$

Algorithm

// Input: $m \times n$ matrix A
// Output: $m \times n$ matrix in reduced row echelon form, rank and the pivotal columns

1. Create a function that take the matrix A as input
2. Set $\mathrm{i}=0, \mathrm{j}=0$, rank $=0$
3. While $i \leq m-1$ and $j \leq n-1$ ($m=$ number of rows and $n=$ number of columns)
4. Find position of maximum absolute value(Pivot element and position) from $A(i, j)$, $i \geq j$.
5. If pivot is equal to zero(or less than some tolerance value)
(a) $\operatorname{Set} \mathrm{j}=\mathrm{j}+1$
else
(b) Perform $R_{i} \longleftrightarrow R_{\text {pivot }}$
(c) Divide each element of row i by $a_{i j}$, thus making the pivot $a_{i j}$ equal to one
(d) For each row x from 1 to m, with $k \neq i$ subtract row i multiplied by $a_{x j}$ from row x.
(e) Set $i=i+1, j=j+1$, rank $=\operatorname{rank}+1$;
end if
end while
6. Return transformed matrix A and rank.
7. Find the basis of the Column space of the below matrices.

$$
A=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
2 & 1 & 0 & 1
\end{array}\right] \text { and } C=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

