Lab Worksheet (Week-7)

Row-Reduced Echelon Form

1. Create a code in Python that can be called as a function (name it $r_r_r_e_f$) that gives the row reduced echelon form of any given matrix, its rank, and the pivotal columns. Find the rref of A and B using the above mentioned function:

$$A = \begin{bmatrix} 1 & 3 & 4 \\ 5 & -9 & -8 \\ 4 & 7 & 8 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 6 & 7 \\ -1 & -5 & 1 \\ 1 & 9 & 0 \end{bmatrix}$$

Algorithm

// Input: $m \times n$ matrix A

// Output: $m \times n$ matrix in reduced row echelon form, rank and the pivotal columns

- 1. Create a function that take the matrix A as input
- 2. Set i = 0, j = 0, rank = 0
- 3. While $i \leq m-1$ and $j \leq n-1$ (m=number of rows and n=number of columns)
- 4. Find position of maximum absolute value (Pivot element and position) from A(i, j), $i \ge j$.
- 5. If pivot is equal to zero(or less than some tolerance value)
 - (a) Set j = j + 1else
 - (b) Perform $R_i \longleftrightarrow R_{pivot}$
 - (c) Divide each element of row i by a_{ij} , thus making the pivot a_{ij} equal to one
 - (d) For each row x from 1 to m, with $k \neq i$ subtract row i multiplied by a_{xj} from row x.
 - (e) Set i = i + 1, j = j + 1, rank = rank + 1; end if end while
- 6. Return transformed matrix A and rank.
- 2. Find the basis of the Column space of the below matrices.

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 0 & 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$