Tutorial Worksheet-2 (WL2.2, WL3.1) Define vector spaces of m×n matrices and its practical applications, introduction to system of linear equations, Row-Reduced Echelon form, rank of a matrix, linear transformation

Name and section:

Instructor's name:

1. Check the consistency of the following system of equations graphically:

 $\begin{array}{rcl} x-3y &=& 4\\ -2x+6y &=& 5 \end{array}$

2. Prove that the set of Matrices of order 2×3 denoted as $\mathbb{M}_{2\times 3}(\mathbb{R})$ forms a vector space over \mathbb{R} under usual addition and scalar multiplication of matrices.

Solution:

Let A, B, and $C \in \mathbb{M}_{2 \times 3}(\mathbb{R})$ such that

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}, \quad B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}, \text{ and } C = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{bmatrix}$$

i. Closure of Addition:- If $A, B \in \mathbb{M}_{2 \times 3}(\mathbb{R})$ then $A + B \in \mathbb{M}_{2 \times 3}(\mathbb{R})$ Let

$$A + B = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \end{bmatrix} \in \mathbb{M}_{2 \times 3}(\mathbb{R})$$

Hence, closure of addition property holds.

ii. Closure of Scalar Multiplication:- If $A \in M_{2\times 3}(\mathbb{R})$ then $c \cdot A \in M_{2\times 3}(\mathbb{R})$.

$$c \cdot A = \begin{bmatrix} c \cdot a_{11} & c \cdot a_{12} & c \cdot a_{13} \\ c \cdot a_{21} & c \cdot a_{22} & c \cdot a_{23} \end{bmatrix} \in \mathbb{M}_{2 \times 3}(\mathbb{R})$$

Hence, closure of scalar multiplication property holds.

iii. Commutativity of Addition:- For all $A, B \in \mathbb{M}_{2 \times 3}(\mathbb{R}), A + B = B + A$.

$$A + B = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \end{bmatrix}$$
$$= \begin{bmatrix} b_{11} + a_{11} & b_{12} + a_{12} & b_{13} + a_{13} \\ b_{21} + a_{21} & b_{22} + a_{22} & b_{23} + a_{23} \end{bmatrix} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix} + \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} = B + A$$

Hence, commutativity of addition property holds.

iv. Associativity of Addition:- For all $A, B, C \in \mathbb{M}_{2 \times 3}(\mathbb{R})$, (A + B) + C = A + (B + C).

$$(A+B)+C = \left(\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix} \right) + \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{bmatrix}$$

 $= \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \end{bmatrix} + \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} + c_{11} & a_{12} + b_{12} + c_{12} \\ a_{21} + b_{21} + c_{21} & a_{22} + b_{22} + c_{22} \end{bmatrix}$ $= \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} + \begin{bmatrix} b_{11} + c_{11} & b_{12} + c_{12} \\ b_{21} + c_{21} & b_{22} + c_{22} \end{bmatrix}$ $= \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} + \begin{pmatrix} \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix} + \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \end{bmatrix} \end{pmatrix}$

= A + (B + C) Hence, associativity of addition property holds.

v. Additive Identity:- For every $A \in \mathbb{M}_{2\times 3}(\mathbb{R})$ there exist an element called the zero element and denoted $0 \in \mathbb{M}_{2\times 3}(\mathbb{R})$ such that A + 0 = A.

Let us take

$$A + 0 = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} = A$$

Hence, $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is the additive identity of $\mathbb{M}_{2\times 3}(\mathbb{R})$.

vi. Additive Inverse:- For each element $A \in \mathbb{M}_{2\times 3}(\mathbb{R})$ there is an element $D \in \mathbb{M}_{2\times 3}(\mathbb{R})$ such that A + D = 0.

Let us take

$$A + D = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} + \begin{bmatrix} -a_{11} & -a_{12} & -a_{13} \\ -a_{21} & -a_{22} & -a_{23} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Hence,

$$\begin{bmatrix} -a_{11} & -a_{12} & -a_{13} \\ -a_{21} & -a_{22} & -a_{23} \end{bmatrix}$$

is the inverse element for $A \in \mathbb{M}_{2 \times 3}(\mathbb{R})$.

vii. Scalar Identity For each $A \in \mathbb{M}_{2 \times 3}(\mathbb{R}), 1 \cdot A = A$.

$$1 \cdot A = 1 \cdot \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} = \begin{bmatrix} 1 \cdot a_{11} & 1 \cdot a_{12} & 1 \cdot a_{13} \\ 1 \cdot a_{21} & 1 \cdot a_{22} & 1 \cdot a_{23} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} = A$$

viii. Scalar Associativity:- For all $A \in \mathbb{M}_{2\times 3}(\mathbb{R})$ and $a, b \in \mathbb{R}$, (ab)A = a(bA).

$$(ab) \cdot A = (ab) \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} = \begin{bmatrix} ab \cdot a_{11} & ab \cdot a_{12} & ab \cdot a_{13} \\ ab \cdot a_{21} & ab \cdot a_{22} & ab \cdot a_{23} \end{bmatrix} = a \begin{bmatrix} b \cdot a_{11} & b \cdot a_{12} & b \cdot a_{13} \\ b \cdot a_{21} & b \cdot a_{22} & b \cdot a_{23} \end{bmatrix}$$
$$= a \left(b \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \right) = a(b \cdot A)$$

ix. Scalar Distribution:- For all $A, B \in \mathbb{M}_{2 \times 3}(\mathbb{R})$ and $a \in \mathbb{R}$, $a \cdot (A + B) = a \cdot A + a \cdot B$.

$$a \cdot (A+B) = a \left(\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix} \right)$$
$$= \left(\begin{bmatrix} a \cdot a_{11} & a \cdot a_{12} & a \cdot a_{13} \\ a \cdot a_{21} & a \cdot a_{22} & a \cdot a_{23} \end{bmatrix} + \begin{bmatrix} a \cdot b_{11} & a \cdot b_{12} & a \cdot b_{13} \\ a \cdot b_{21} & a \cdot b_{22} & a \cdot b_{23} \end{bmatrix} \right)$$
$$= a \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} + a \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix} = a \cdot A + a \cdot B.$$

x. Vector Distribution:- For all $A \in \mathbb{M}_{2\times 3}(\mathbb{R})$ and $a, b \in \mathbb{R}$, $(a+b) \cdot A = a \cdot A + b \cdot A$. Take,

$$(a+b) \cdot A = a \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} + b \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} = a \cdot A + b \cdot A.$$

3. For which values of the constant c is $\begin{bmatrix} 1 \\ c \\ c^2 \end{bmatrix}$ a linear combination of $\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 3 \\ 9 \end{bmatrix}$.

Solution: suppose $\begin{bmatrix} 1\\c\\c^2 \end{bmatrix}$ is linear combination of $\begin{bmatrix} 1\\0\\4 \end{bmatrix}$, and $\begin{bmatrix} 1\\3\\9 \end{bmatrix}$ then $\exists c_1, c_2$ such that $c_1 \begin{bmatrix} 1\\0\\4 \end{bmatrix} + c_2 \begin{bmatrix} 1\\3\\9 \end{bmatrix} = \begin{bmatrix} 1\\c\\c^2 \end{bmatrix}$ The sugmented metric will turn out to be

The augmented matrix will turn out to be

$$\left[\begin{array}{cc|c} 1 & 1 & 1 \\ 2 & 3 & c \\ 4 & 9 & c^2 \end{array}\right]$$

 $R_2 \to R_2 - 2R_1$ and $R_3 \to R_3 - 4R_1$

$$\sim \left[\begin{array}{ccc|c} 1 & 1 & 1 \\ 0 & 1 & c-2 \\ 0 & 5 & c^2 - 4 \end{array} \right]$$

 $R_1 \rightarrow R_1 - R_2$ and $R_3 \rightarrow R_3 - 5R_2$

$$\sim \begin{bmatrix} 1 & 1 & | & 1 \\ 0 & 1 & | & c-2 \\ 0 & 0 & | & c^2 - 5c + 6 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & 1 & | & 1 \\ 0 & 1 & | & c-2 \\ 0 & 0 & | & (c-2)(c-3) \end{bmatrix}$$
f $c = 2$ or $c = 3$

so this system is consistent if c = 2 or c = 3

4. Convert the following matrices into the rref

$$\begin{bmatrix} 2 & 4 & 10 & -18 \\ -1 & -2 & -1 & 3 \\ -2 & -3 & 0 & 3 \\ 1 & 1 & -1 & -5 \end{bmatrix}, \begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix}$$

Solution: a) $A = \begin{bmatrix} 2 & 4 & 10 & -18 \\ -1 & -2 & -1 & 3 \\ -2 & -3 & 0 & 3 \\ 1 & 1 & -1 & -5 \end{bmatrix}$

$R_1 \rightarrow R_1/2$	$A \sim \begin{bmatrix} 1 & 2 & 5 & -9 \\ -1 & -2 & -1 & 3 \\ -2 & -3 & 0 & 3 \\ 1 & 1 & -1 & -5 \end{bmatrix}$
$R_2 \to R_2 + R_1, R_3 \to R_3 + 2R_1, R_3 \to R_3 \to$	$R_4 \to R_4 - R_1$
	$A \sim \begin{bmatrix} 1 & 2 & 5 & -9 \\ 0 & 0 & 4 & -6 \\ 0 & 1 & 10 & -15 \\ 0 & -1 & -6 & 4 \end{bmatrix}$
$R_2 \leftrightarrow R_3$	$A \sim \begin{bmatrix} 1 & 2 & 5 & -9 \\ 0 & 1 & 10 & -15 \\ 0 & 0 & 4 & -6 \\ 0 & -1 & -6 & 4 \end{bmatrix}$
$R_1 \to R_1 - 2R_2, R_4 \to R_4 + R_2,$	
	$A \sim \begin{bmatrix} 1 & 0 & -15 & 21 \\ 0 & 1 & 10 & -15 \\ 0 & 0 & 4 & -6 \\ 0 & 0 & 4 & -11 \end{bmatrix}$
$R_3 \rightarrow R_3/4$	[1 0 15 01]
	$A \sim \begin{bmatrix} 1 & 0 & -15 & 21 \\ 0 & 1 & 10 & -15 \\ 0 & 0 & 1 & -3/2 \\ 0 & 0 & 4 & -11 \end{bmatrix}$
$R_1 \to R_1 + 15R_3, R_2 \to R_2 - 10R_3$	$R_3, R_4 \to R_4 - 4R_3$
	$A \sim \begin{bmatrix} 1 & 0 & 0 & -3/2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -3/2 \\ 0 & 0 & 0 & -5 \end{bmatrix}$
$R_4 \rightarrow R_4/-5$	$A \sim \begin{bmatrix} 1 & 0 & 0 & -3/2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -3/2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
$R_1 \to R_1 + (3/2)R_4, R_3 \to R_3 + (3/2)R_4$	$(3/2)R_4$
	$A \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

b)

~)	$B = \begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 3 & -9 & 12 & -9 & 6 & 15 \end{bmatrix}$
$R_3 \rightarrow R_3 - R_2$	$B \sim \begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 3 & -7 & 8 & -5 & 8 & 9 \\ 0 & -2 & 4 & -4 & -2 & 6 \end{bmatrix}$
$R_3 \rightarrow 3R_3, R_2 \rightarrow 3R_2$	$B \sim \begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 9 & -21 & 24 & -15 & 24 & 27 \\ 0 & -6 & 12 & -12 & -6 & 18 \end{bmatrix}$
$R_3 \to R_3 + 2R_1, R_2 \to R_2 + 7$	R_{1} $B \sim \begin{bmatrix} 0 & 3 & -6 & 6 & 4 & -5 \\ 9 & 0 & -18 & 27 & 52 & -8 \\ 0 & 0 & 0 & 0 & 2 & 8 \end{bmatrix}$
$R_1 \to R_1 - 2R_3$	$B \sim \begin{bmatrix} 0 & 3 & -6 & 6 & 0 & -21 \\ 9 & 0 & -18 & 27 & 52 & -8 \\ 0 & 0 & 0 & 0 & 2 & 8 \end{bmatrix}$
$R_1 \to R_1/3, R_2 \to R_2/9, R_3 -$	$\rightarrow R_3/3$
	$B \sim \begin{bmatrix} 0 & 1 & -2 & 2 & 0 & -7 \\ 1 & 0 & -2 & 3 & 52/9 & -8/9 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix}$
$R_2 \to R_2 - 52R_3/9$	$B \sim \begin{bmatrix} 0 & 1 & -2 & 2 & 0 & -7 \\ 1 & 0 & -2 & 3 & 0 & -24 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$
$R_1 \leftrightarrow R_2$	$B \sim \begin{bmatrix} 1 & 0 & -2 & 3 & 0 & -24 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$

5. Evaluate the rank of matrices which gives in the problem (5).

Solution: a) $A \sim \begin{bmatrix} (1) & 0 & 0 & 0 \\ 0 & (1) & 0 & 0 \\ 0 & 0 & (1) & 0 \\ 0 & 0 & 0 & (1) \end{bmatrix}$ Since there are 4 pivots, the rank of matrix A is 4. b) $B \sim \begin{bmatrix} (1) & 0 & -6 & 9 & 0 & -72 \\ 0 & (1) & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & (1) & 4 \end{bmatrix}$

Since there are 3 pivots, the rank of matrix B is 3.

6. Reduce the following matrix into rref (Row-Reduced Echelon form) and find its rank

1	2	3]
2	4	7
3	7	14

Also list the pivotal elements of the matrix.

Solution: $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 7 & 14 \end{bmatrix}$ $R_2 \to R_2 - 2R_1, R_3 \to R_3 - 3R_1$ $A \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 1 \\ 0 & 1 & 5 \end{bmatrix}$ $R_1 \to R_1 - 3R_2, R_3 \to R_3 - 5R_2$ $A \sim \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ $R_1 \to R_1 - 2R_3$ $A \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ $R_2 \leftrightarrow R_3$ $A \sim \begin{bmatrix} (1) & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

There are 3 pivot elements in A which are shown by the circles, hence the rank of the matrix A is 3.

7. Consider the transformation T from \mathbb{R}^2 to \mathbb{R}^3 given by

$$T\begin{bmatrix} x_1\\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 4\\ 5\\ 6 \end{bmatrix}$$

Is this transformation linear. If so, find its matrix representation.

Solution:

$$T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$
Let $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ and $Y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$

$$T[X + Y] = T \begin{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

$$= T \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \end{bmatrix}$$

$$= (x_1 + y_1) \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + (x_2 + y_2) \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$

$$= (x_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}) + (x_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + y_2 \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix})$$

$$= T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + T \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$
Now let, α be a scalar:

$$T \left(\alpha \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right) = T \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \end{bmatrix}$$

$$= \alpha x_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \alpha x_2 \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$

$$= \alpha \left(x_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} \right)$$
Hence, it is a linear transformation. Consider the ordered basis of \mathbb{R}^2

$$T \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \text{ and } T \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$$

Therefore the matrix representation of T is:
$\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$