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Today’s Lecture
Looking ahead

Review of past concepts
Random Walk on a Line
Random Walk on a Ring

Definitions, Theorem’s - recap
1 Law of total probability: P(A)=∑

n P(A
∣∣Bn)P(Bn).

2 Law of total expectation: E(A)=∑
n E(A

∣∣Bn)P(Bn).

{Bn} partitions the probability space into disjoint regions.

Ignore following theorems for now!
3 Thm. If pij is doubly stochastic probability transition

matrix (& S = {1,2, ...N} is a finite state space), then there
exists a stationary distribution Π(x)= 1

N for all x ∈S.
4 Thm. If pij is irreducible and has a stationary distribution
Π, then Π(x)= 1

Ex Tx
.

Tx =min{n > 0 such that Xn = x } (1st return time to x).
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Review of past concepts
Random Walk on a Line
Random Walk on a Ring

Squirrel out for a random walk on an island

1) What is the probability that the squirrel will eventually fall off
the cliff or into the pit?

2) What’s the squirrel’s life expectancy in terms of no. of hops?
Does his initial position change his chances of surviving longer?
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Tree Diagram

Guess: since the tree spans the entire state space (including
the boundaries), perhaps there is no escape for the squirrel!
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Probability that the squirrel will die ..
W : event that the squirrel falls in to the pit (left). We want to compute:

Pm =Pm(left pit)=Probability of W when he starts at X0 =m, (1)

with P0 = 1, Pn = 0.
Let E be the event that the first hop is to the left. We will condition B

our computation upon this event E as follows:

Pm =P(W and E
∣∣X0 =m)+P(W and E

∣∣X0 =m)

=P(W
∣∣E ∧X0 =m)P(E

∣∣X0 =m)+P(W
∣∣E ∧X0 =m)P(E

∣∣X0 =m)

=P(W
∣∣X1 =m−1)× 1

2
+P(W

∣∣X1 =m+1)× 1
2

indep. hops= 1
2

P(W
∣∣X0 =m−1)+ 1

2
P(W

∣∣X0 =m+1)= 1
2

Pm−1 +
1
2

Pm+1
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Solving recurrence relation: Pm+1 = 2Pm −Pm−1

The characteristic equation is r2 −2r +1= 0 =⇒ r = {1,1}.

Therefore, Pm = a∗1m +b∗m∗1m with P0 = 1, Pn = 0 gives
Pm = 1− m

n .

Symmetrical solution
What is the probability that starting from the same initial
position, he falls off the cliff on the right at x = n? i.e.
Pm(right cliff)=?
B Symmetry implies Pm(right cliff)=Pn−m(left pit)= 1− n−m

n .

Now check that Pm(left pit)+Pm(right cliff)= 1, i.e. the squirrel
will eventually fall off the edge and die!
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Life expectancy?
Let D be the number of hops (steps) before he falls off the
edge. We will use the law of total expectation and once again
condition B upon the event E as follows:

Em =E(D
∣∣X0 =m)

=E(D
∣∣E ∧X0 =m)P(E

∣∣X0 =m)+E(D
∣∣E ∧X0 =m)P(E

∣∣X0 =m)

= 1
2

E(D
∣∣X1 =m−1)+ 1

2
E(D

∣∣X1 =m+1)

reset chain= 1
2

{
1+E(D

∣∣X0 =m−1)
}
+ 1

2

{
1+E(D

∣∣X0 =m+1)
}

= 1+ 1
2

Em−1 +
1
2

Em+1
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Life expectancy?
Again we have a recurrence relation Em+1 −2Em +Em−1 =−2,
we use the roots of the characteristic equation r2 −2r +1= 0
along with E0 =En = 0 to find Em =m(n−m), i.e. his life
expectancy is the product of his distances from the two edges.

B Do not forget to account for the particular solution because
we have a non-homogeneous contribution from −2!

Where should he start from to have a larger life span?
Obtain the maximum of the function f (m)=m(n−m) ... m = n/2!
B Careful with discrete space if you are planning to employ
calculus machinery!
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Random Walk on a Ring;
{
Xn

}
is a Markov chain

1) What is the expected no. of steps that Xn will take before returning
to its starting position?
2) What is the probability that Xn will visit all other states before
returning to its starting position?
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p is doubly stochastic, irreducible

p =



1 2 3 4 · · · · 11 12

1 0 1/2 0 0 · · · · 0 1/2
2 1/2 0 1/2 0 · 0 0
3 0 1/2 0 1/2 0 0 0
4 0 0 1/2 0 1/2 · · · 0 0
· · · · · ·
· · · · 0 ·
· · · 1/2 ·

11 0 0 0 0 · · · 1/2 0 1/2
12 1/2 0 0 0 · · · · 1/2 0


Therefore, ∃ a stationary distribution Π(x)= 1

12 ∀x ∈ {1,2,3...12}; and,
ExTx = 1

Π(x) = 12; Tx =min
{
n > 0 s.t. Xn = x

}
is first return time to x .
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Probability of visiting all other states before returning to start, φ
WLOG, we consider x = 12(or equivalently 0) to be that starting point
and make the first move to x = 1.
Like in the case of the random walk on a line, we will condition B

upon the first move to x = 1.

Let φ(m)=Prob(we reach 11 before hitting 12 starting from m).
We want to find φ(1)! In this set up, φ(12)=φ(0)= 0 and φ(11)= 1.

Like before the law of total probability gives us

φ(m)= ∑
n∈S

p(m,n)φ(n),

which leads to a recurrence relation φm = 1
2φm−1 + 1

2φm+1.

The solution is φm =m/11 that gives us φ(1)= 1
11

.
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Applications of random walk in science and engineering

Brownian motion is the limit of symmetric random walk (take
infinitesimally smaller step sizes).

Molecular motion in a fluid.

Price of a fluctuating stock in the financial market.

(Neuroscience): modeling neurons firing in the brain.

Network dynamics in wireless networks.

Population dynamics.

Quantum field theory.

Polymer science.

Check out the sculpture Quantum Cloud in London (made
using a random walk model)!
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