Application of law of total probability and law of total expectation: Random Walk

Amrik Sen

PCL 108: Statistical Methods \& Algorithms
Thapar Institute of Engineering \& technology, Patiala
Fall 2020

Definitions, Theorem's - recap

- Law of total probability: $P(A)=\sum_{n} P\left(A \mid B_{n}\right) P\left(B_{n}\right)$.
(2) Law of total expectation: $E(A)=\sum_{n} E\left(A \mid B_{n}\right) P\left(B_{n}\right)$.
$\left\{B_{n}\right\}$ partitions the probability space into disjoint regions.

Definitions, Theorem's - recap

- Law of total probability: $P(A)=\sum_{n} P\left(A \mid B_{n}\right) P\left(B_{n}\right)$.
(2) Law of total expectation: $E(A)=\sum_{n} E\left(A \mid B_{n}\right) P\left(B_{n}\right)$.
$\left\{B_{n}\right\}$ partitions the probability space into disjoint regions.

Ignore following theorems for now!
(3) Thm. If $p_{i j}$ is doubly stochastic probability transition matrix (\& $S=\{1,2, \ldots N\}$ is a finite state space), then there exists a stationary distribution $\Pi(x)=\frac{1}{N}$ for all $x \in S$.

Definitions, Theorem's - recap

- Law of total probability: $P(A)=\sum_{n} P\left(A \mid B_{n}\right) P\left(B_{n}\right)$.
(2) Law of total expectation: $E(A)=\sum_{n} E\left(A \mid B_{n}\right) P\left(B_{n}\right)$.
$\left\{B_{n}\right\}$ partitions the probability space into disjoint regions.

Ignore following theorems for now!
(3) Thm. If $p_{i j}$ is doubly stochastic probability transition matrix (\& $S=\{1,2, \ldots N\}$ is a finite state space), then there exists a stationary distribution $\Pi(x)=\frac{1}{N}$ for all $x \in S$.
(9) Thm. If $p_{i j}$ is irreducible and has a stationary distribution Π, then $\Pi(x)=\frac{1}{E_{x} T_{x}}$.
$T_{X}=\min \left\{n>0\right.$ such that $\left.X_{n}=x\right\}\left(1^{\text {st }}\right.$ return time to $\left.x\right)$.

Squirrel out for a random walk on an island

1) What is the probability that the squirrel will eventually fall off the cliff or into the pit?

Squirrel out for a random walk on an island

1) What is the probability that the squirrel will eventually fall off the cliff or into the pit?
2) What's the squirrel's life expectancy in terms of no. of hops? Does his initial position change his chances of surviving longer?

Tree Diagram

Guess: since the tree spans the entire state space (including the boundaries), perhaps there is no escape for the squirrel!

Probability that the squirrel will die ..

W: event that the squirrel falls in to the pit (left). We want to compute:

$$
\begin{equation*}
P_{m}=P_{m}(\text { left pit })=\text { Probability of } W \text { when he starts at } X_{0}=m, \tag{1}
\end{equation*}
$$

with $P_{0}=1, P_{n}=0$.
Let E be the event that the first hop is to the left. We will condition \qquad our computation upon this event E as follows:

Probability that the squirrel will die ..

W: event that the squirrel falls in to the pit (left). We want to compute:

$$
\begin{equation*}
P_{m}=P_{m}(\text { left pit })=\text { Probability of } W \text { when he starts at } X_{0}=m \tag{1}
\end{equation*}
$$

with $P_{0}=1, P_{n}=0$.
Let E be the event that the first hop is to the left. We will condition $₫$ our computation upon this event E as follows:

$$
\begin{aligned}
P_{m} & =P\left(W \text { and } E \mid X_{0}=m\right)+P\left(W \text { and } \bar{E} \mid X_{0}=m\right) \\
& =P\left(W \mid E \wedge X_{0}=m\right) P\left(E \mid X_{0}=m\right)+P\left(W \mid \bar{E} \wedge X_{0}=m\right) P\left(\bar{E} \mid X_{0}=m\right) \\
& =P\left(W \mid X_{1}=m-1\right) \times \frac{1}{2}+P\left(W \mid X_{1}=m+1\right) \times \frac{1}{2}
\end{aligned}
$$

$$
\stackrel{\text { indep. hops }}{=} \frac{1}{2} P\left(W \mid X_{0}=m-1\right)+\frac{1}{2} P\left(W \mid X_{0}=m+1\right)=\frac{1}{2} P_{m-1}+\frac{1}{2} P_{m+1}
$$

Solving recurrence relation: $P_{m+1}=2 P_{m}-P_{m-1}$
The characteristic equation is $r^{2}-2 r+1=0 \Longrightarrow r=\{1,1\}$.

Solving recurrence relation: $P_{m+1}=2 P_{m}-P_{m-1}$

The characteristic equation is $r^{2}-2 r+1=0 \Longrightarrow r=\{1,1\}$. Therefore, $P_{m}=a * 1^{m}+b * m * 1^{m}$ with $P_{0}=1, P_{n}=0$ gives $P_{m}=1-\frac{m}{n}$.

Solving recurrence relation: $P_{m+1}=2 P_{m}-P_{m-1}$

The characteristic equation is $r^{2}-2 r+1=0 \Longrightarrow r=\{1,1\}$. Therefore, $P_{m}=a * 1^{m}+b * m * 1^{m}$ with $P_{0}=1, P_{n}=0$ gives $P_{m}=1-\frac{m}{n}$.

Symmetrical solution

What is the probability that starting from the same initial position, he falls off the cliff on the right at $x=n$? i.e.
$P_{m}($ right cliff $)=$?

Solving recurrence relation: $P_{m+1}=2 P_{m}-P_{m-1}$

The characteristic equation is $r^{2}-2 r+1=0 \Longrightarrow r=\{1,1\}$. Therefore, $P_{m}=a * 1^{m}+b * m * 1^{m}$ with $P_{0}=1, P_{n}=0$ gives $P_{m}=1-\frac{m}{n}$.

Symmetrical solution

What is the probability that starting from the same initial position, he falls off the cliff on the right at $x=n$? i.e.
$P_{m}($ right cliff $)=$?
\triangle Symmetry implies $P_{m}($ right cliff $)=P_{n-m}($ left pit $)=1-\frac{n-m}{n}$.

Solving recurrence relation: $P_{m+1}=2 P_{m}-P_{m-1}$

The characteristic equation is $r^{2}-2 r+1=0 \Longrightarrow r=\{1,1\}$. Therefore, $P_{m}=a * 1^{m}+b * m * 1^{m}$ with $P_{0}=1, P_{n}=0$ gives $P_{m}=1-\frac{m}{n}$.

Symmetrical solution

What is the probability that starting from the same initial position, he falls off the cliff on the right at $x=n$? i.e.
$P_{m}($ right cliff $)=$?
\triangle Symmetry implies P_{m} (right cliff $)=P_{n-m}($ left pit $)=1-\frac{n-m}{n}$.
Now check that P_{m} (left pit) $+P_{m}($ right cliff $)=1$, i.e. the squirrel will eventually fall off the edge and die!

Life expectancy?

Let D be the number of hops (steps) before he falls off the edge. We will use the law of total expectation and once again condition \triangle upon the event E as follows:

$$
\begin{aligned}
E_{m} & =E\left(D \mid X_{0}=m\right) \\
& =E\left(D \mid E \wedge X_{0}=m\right) P\left(E \mid X_{0}=m\right)+E\left(D \mid \bar{E} \wedge X_{0}=m\right) P\left(\bar{E} \mid X_{0}=m\right) \\
& =\frac{1}{2} E\left(D \mid X_{1}=m-1\right)+\frac{1}{2} E\left(D \mid X_{1}=m+1\right) \\
& \stackrel{\text { reset chain }}{=} \frac{1}{2}\left\{1+E\left(D \mid X_{0}=m-1\right)\right\}+\frac{1}{2}\left\{1+E\left(D \mid X_{0}=m+1\right)\right\} \\
& =1+\frac{1}{2} E_{m-1}+\frac{1}{2} E_{m+1}
\end{aligned}
$$

Life expectancy?

Again we have a recurrence relation $E_{m+1}-2 E_{m}+E_{m-1}=-2$, we use the roots of the characteristic equation $r^{2}-2 r+1=0$ along with $E_{0}=E_{n}=0$ to find $E_{m}=m(n-m)$, i.e. his life expectancy is the product of his distances from the two edges.
\triangle Do not forget to account for the particular solution because we have a non-homogeneous contribution from -2!

Life expectancy?

Again we have a recurrence relation $E_{m+1}-2 E_{m}+E_{m-1}=-2$, we use the roots of the characteristic equation $r^{2}-2 r+1=0$ along with $E_{0}=E_{n}=0$ to find $E_{m}=m(n-m)$, i.e. his life expectancy is the product of his distances from the two edges.
\triangle Do not forget to account for the particular solution because we have a non-homogeneous contribution from -2!

Where should he start from to have a larger life span?

Obtain the maximum of the function $f(m)=m(n-m) \ldots m=n / 2$! \triangle Careful with discrete space if you are planning to employ calculus machinery!

Random Walk on a Ring; $\left\{X_{n}\right\}$ is a Markov chain

1) What is the expected no. of steps that X_{n} will take before returning to its starting position?
2) What is the probability that X_{n} will visit all other states before returning to its starting position?

p is doubly stochastic, irreducible

Therefore, \exists a stationary distribution $\Pi(x)=\frac{1}{12} \quad \forall x \in\{1,2,3 \ldots 12\}$; and, $E_{x} T_{x}=\frac{1}{\Pi(x)}=12 ; T_{x}=\min \left\{n>0\right.$ s.t. $\left.X_{n}=x\right\}$ is first return time to x.

Probability of visiting all other states before returning to start, ϕ

WLOG, we consider $x=12$ (or equivalently 0) to be that starting point and make the first move to $x=1$. Like in the case of the random walk on a line, we will condition \uparrow upon the first move to $x=1$.

Probability of visiting all other states before returning to start, ϕ

WLOG, we consider $x=12$ (or equivalently 0) to be that starting point and make the first move to $x=1$. Like in the case of the random walk on a line, we will condition \uparrow upon the first move to $x=1$.

Let $\phi(m)=\operatorname{Prob}($ we reach 11 before hitting 12 starting from m). We want to find $\phi(1)!$ In this set up, $\phi(12)=\phi(0)=0$ and $\phi(11)=1$.

Probability of visiting all other states before returning to start, ϕ

WLOG, we consider $x=12$ (or equivalently 0) to be that starting point and make the first move to $x=1$.
Like in the case of the random walk on a line, we will condition upon the first move to $x=1$.
Let $\phi(m)=\operatorname{Prob}$ (we reach 11 before hitting 12 starting from m).
We want to find $\phi(1)!$ In this set up, $\phi(12)=\phi(0)=0$ and $\phi(11)=1$.
Like before the law of total probability gives us

$$
\phi(m)=\sum_{n \in S} p(m, n) \phi(n)
$$

which leads to a recurrence relation $\phi_{m}=\frac{1}{2} \phi_{m-1}+\frac{1}{2} \phi_{m+1}$.

Probability of visiting all other states before returning to start, ϕ

WLOG, we consider $x=12$ (or equivalently 0) to be that starting point and make the first move to $x=1$.
Like in the case of the random walk on a line, we will condition upon the first move to $x=1$.
Let $\phi(m)=\operatorname{Prob}$ (we reach 11 before hitting 12 starting from m).
We want to find $\phi(1)!$ In this set up, $\phi(12)=\phi(0)=0$ and $\phi(11)=1$.
Like before the law of total probability gives us

$$
\phi(m)=\sum_{n \in S} p(m, n) \phi(n)
$$

which leads to a recurrence relation $\phi_{m}=\frac{1}{2} \phi_{m-1}+\frac{1}{2} \phi_{m+1}$.
The solution is $\phi_{m}=m / 11$ that gives us $\phi(1)=\frac{1}{11}$.

Applications of random walk in science and engineering

- Brownian motion is the limit of symmetric random walk (take infinitesimally smaller step sizes).
- Molecular motion in a fluid.
- Price of a fluctuating stock in the financial market.
- (Neuroscience): modeling neurons firing in the brain.
- Network dynamics in wireless networks.
- Population dynamics.
- Quantum field theory.
- Polymer science.
- Check out the sculpture Quantum Cloud in London (made using a random walk model)!

