
Solutions to Systems of Linear Differential Equations (DE) 

An n-dimensional linear first-order DE system is one that can be written as a 
matrix vector equation -

( ) ( ) ( ) ( )X t A t X t f t = +
𝐴(𝑡) is an  𝑛 × 𝑛 matrix

Ԧ𝑋(𝑡)and Ԧ𝑓 𝑡 are 𝑛 × 1 vectors

If Ԧ𝑓(𝑡) ≡ 0, the system is homogenous, i.e. ( ) ( ) ( )X t A t X t =

Example: 3 2

3

x x y

y x

z x y z

 = −

 =

 = − + +

3 2 0

1 0 0

1 1 3

x

X X X y

z

−   
    = =   
   −   

𝑨𝑨



3 2

3

x x y

y x

z x y z

 = −

 =

 = − + +

It may be easily verified that                         is a solution to the system
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Actually, it can be easily verified that           and          are also solutions to the same
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linear combinations 
of these will also be 

solutions
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Similarly, for the non-
homogenous ODE 
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Particular solution 
of the system

CHECK!



The Superposition Principle for Homogenous Linear DE Systems

If   are linearly independent solutions to the homogenous equation                              
then any linear combinations of these, i.e.                                                             

is also a solution to that equation for any set of real constants 𝑐1, 𝑐2,…….., 𝑐𝑛

( ) ( ) ( )X t A t X t =1 2( ), ( ),.......... ( )nx t x t x t

1 1 2 2( ) ( ) ......... ( )n nc x t c x t c x t+ + +

Using this Superposition Principle and the homogenous and particular solutions obtained earlier -
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We need to show that                                                         are linearly 

independent on (−∞,∞)
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Step 1: Choose a point, say 𝑡0 = 0 ∈ (−∞,∞)

Step 2: Calculate                                    and form the column space matrix           1 0 2 0 3 0( ), ( ), ( )x t x t x t
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The columns of C are obviously 
independent but we will confirm 
that in the next slide by computing 
𝑟𝑟𝑒𝑓 (𝑐)



Step 3: Test for linear independence of the columns of 𝐶 by computing 

𝑟𝑟𝑒𝑓(𝐶)=
1 0 0
0 1 0
0 0 1

Clearly, the column vectors of 𝐶 must be linearly independent

Alternatively, this could have been shown by calculating and showing that det(𝐶) ≠ 0

In general, for a 𝑛 × 𝑛 linear system, we need n linearly independent solutions
to form a basis for the solution space with the general solution to the homogenous system given by  

1 2( ), ( ),.......... ( )nX t X t X t

1 1 2 2 1 1( ) ( ) ......... ( ) , ,.........h n n nX c X t c X t c X t c c c= + + + ℝ



Fundamental Matrix:  

Note that 𝑋ℎ can also be expressed as follows -
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Fundamental Matrix   𝑋 𝑡 (continued)

(i) det(𝑋 𝑡 ) ≠ 0

(ii) The Fundamental Matrix is NOT unique

A different set of linearly independent solutions 
will produce a different 𝑋(𝑡) but that Ԧ𝑥ℎ = 𝑋 𝑡 Ԧ𝑐
would hold

One can also show that
𝑋′ 𝑡 = 𝐴𝑋(𝑡)

How do we find Ԧ𝑥ℎ and Ԧ𝑥𝑝 for a System of Linear ODEs?



Consider the Homogenous Solution Ԧ𝑥ℎ first,  i.e. the solution of 𝑋′ = 𝐴𝑋

If we choose solutions of the form Ԧ𝑥 = 𝑒𝜆𝑡 Ԧ𝑣, 

then substituting in 𝑋′ 𝑡 = 𝐴𝑋(𝑡)

gives      𝜆𝑒𝜆𝑡 Ԧ𝑣 = 𝐴𝑒𝜆𝑡 Ԧ𝑣

Factoring this, we get 𝑒𝜆𝑡 𝐴 − 𝜆𝐼 Ԧ𝑣 = 0

Since 𝑒𝜆𝑡 can never be zero, we need to find 𝜆 and Ԧ𝑣 such that 𝐴 − 𝜆𝐼 Ԧ𝑣 = 0

But a scalar 𝜆 and a non-zero vector Ԧ𝑣 satisfying 𝐴 − 𝜆𝐼 Ԧ𝑣 = 0
are the eigenvalue and eigenvector of the matrix 𝐴



Considering the eigenvalues of 𝐴, we will have three main cases –

(i) Distinct Real Eigenvalues

(ii) Repeated Real Eigenvalues

(iii) Complex Eigenvalues

for the eigenvalues of 𝐴 in 𝑋′ 𝑡 = 𝐴𝑋(𝑡)



Case (i): 𝑋′ 𝑡 = 𝐴𝑋 𝑡 has real eigenvalues    𝜆1, 𝜆2,…….. 𝜆𝑛 𝜆𝑖≠ 𝜆𝑗 for 𝑖 ≠ 𝑗

and the corresponding eigenvectors are    Ԧ𝑣1, Ԧ𝑣2,…….., Ԧ𝑣𝑛

Note that the eigenvalues are not repeated and, therefore, 𝑛 independent 
eigenvectors can be found

For this case, the General Homogenous Solution is of the form –
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Note that in the case of repeated eigen values, i.e. 𝜆𝑖 = 𝜆𝑗 𝑖 ≠ 𝑗,  we will need 

either independent eigenvectors or generalized eigenvectors, as discussed later



Example Consider the following system of ODEs with initial conditions 𝑥(0) = 3, 𝑦 0 = 1

2

2

dx
x y

dt

dy
x y

dt

= − +

= −

𝑋′ =
−2 1
1 −2

𝑋;    𝑋 0 =
3
1

For this, eigenvalues are 𝜆1 = −1, 𝜆2= −3 and eigenvectors Ԧ𝑣1 =
1
1

, Ԧ𝑣2 =
1

−1

General Solution: Ԧ𝑥 𝑡 = 𝑐1𝑒
−𝑡 1

1
+ 𝑐2𝑒

−3𝑡 1
−1

Using the given initial condition 𝑋 0 =
3
1

= 𝑐1
1
1

+ 𝑐2
1

−1
⇒ 𝑐1 = 2, 𝑐2 = 1

Ԧ𝑥 𝑡 = 2𝑒−𝑡
1
1

+ 𝑒−3𝑡
1

−1



Alternatively, Ԧ𝑥 𝑡 = 𝑋 𝑡 Ԧ𝑐 = 𝑒−𝑡 𝑒−3𝑡

𝑒−𝑡 −𝑒−3𝑡
2
1

= 2𝑒
−𝑡 + 𝑒−3𝑡

2𝑒−𝑡 − 𝑒−3𝑡

Phase Portrait 
(Stable Equilibrium at origin, solution from (3,1) in grey)

• Trajectories move towards or away from 
the equilibrium according to the sign of 
the eigenvalues (-ive or +ive) associated 
with the eigenvectors

• Along each eigenvector is a unique 
trajectory called a SEPRATRIX that 
separates the trajectories curving one 
way from those curving the other way

• The equilibrium occurs at the origin and 
the phase portrait is symmetric about 
this point

Solution 
to the IVP

𝑦

𝑥



Case (ii): 𝑋′ 𝑡 = 𝐴𝑋 𝑡 with repeated eigenvalues 𝜆1, 𝜆2 = λ
and with only one eigenvector Ԧ𝑣

Consider only  𝟐 × 𝟐
case for simplicity

Construct an additional linear independent vector 𝒖 as follows

Step (i):  Find Ԧ𝑣 corresponding to λ

Step (ii) Find a new 𝑢 ≠ 0 such that   𝐴 − 𝜆𝐼 𝑢 = Ԧ𝑣

Step (iii) With these, try  Ԧ𝑥 𝑡 = 𝑐1𝑒
𝜆𝑡 Ԧ𝑣 + 𝑐2𝑒

𝜆𝑡(𝑡 Ԧ𝑣 + 𝑢)

𝑢 is referred to as the Generalized Eigenvector 
of 𝐴

But it is not really an eigenvector as 𝐴𝑢 ≠ መ𝜆 𝑢



Why this approach works?

Let 𝑿𝟐 𝒕 = 𝒆𝝀𝒕 𝒕𝒗 + 𝒖 where we are given that 

(a) eigenvalue 𝜆 and eigenvector Ԧ𝑣 satisfy 𝐴 − 𝜆𝐼 Ԧ𝑣 = 0

and  (b) Ԧ𝑋1 𝑡 = 𝑒𝜆𝑡 Ԧ𝑣 is a solution of Ԧ𝑋′ = 𝐴 Ԧ𝑋 , i.e. Ԧ𝑋1
′ = 𝐴 Ԧ𝑋1

Show that 𝑿𝟐
′ = 𝑨𝑿𝟐 if we can find 𝒖 such that 𝑨 − 𝝀𝑰 𝒖 = 𝒗

Substituting, 𝑒𝜆𝑡 Ԧ𝑣 + 𝜆𝑡𝐼 Ԧ𝑣 + 𝜆𝐼𝑢 = 𝑒𝜆𝑡 𝑡𝐴 Ԧ𝑣 + 𝐴𝑢 and equating the coefficients of 𝑡𝑒𝜆𝑡 and 𝑒𝜆𝑡 on 
the LHS and RHS of this equation, we get –

1. Coefficient of 𝑡𝑒𝜆𝑡: (𝐴 − 𝜆𝐼) Ԧ𝑣 = 0 This is the original eigenvalue equation that we already had

2. Coefficient of 𝑒𝜆𝑡:       𝐴 − 𝜆𝐼 𝑢 = Ԧ𝑣 We need to solve this to find  𝑢 and use it to find
Ԧ𝑋2 𝑡 = 𝑒𝜆𝑡 𝑡 Ԧ𝑣 + 𝑢



Example:  Consider 𝑋′ = 𝐴𝑋 =
2 −1
4 6

𝑋

Eigenvalue 𝜆 = 4 (repeated)

Eigenvector Ԧ𝑣=
1

−2

One solution Ԧ𝑥1 𝑡 = 𝑒4𝑡
1
−2

If we follow the earlier approach of Lecture 1 of
Module 3 then we should try our second solution as
Ԧ𝑥2 𝑡 = 𝑡𝑒4𝑡 Ԧ𝑣. However, substituting this Ԧ𝑥2 𝑡 in
Ԧ𝑋′ = 𝐴 Ԧ𝑋, we find that this does not work!

See Example 6, pg. 363 
of Farlow textbook



Example:  Consider 𝑋′ = 𝐴𝑋 =
2 −1
4 6

𝑋

Eigenvalue 𝜆 = 4 (repeated)

Eigenvector Ԧ𝑣=
1

−2

One solution Ԧ𝑥1 𝑡 = 𝑒4𝑡
1
−2

Instead, we try a Generalized Eigenvector 𝑢 such that Ԧ𝑥2 𝑡 = 𝑒4𝑡 𝑡 Ԧ𝑣 + 𝑢 is a solution to  Ԧ𝑥2
′ = 𝐴Ԧ𝑥2

This can be simplified to    (1) 𝐴 − 4𝐼 Ԧ𝑣 = 0 and     (2) 𝐴 − 4𝐼 𝑢 = Ԧ𝑣 by equating the coefficients 
of 𝑒4𝑡 and 𝑡𝑒4𝑡 on both sides of Ԧ𝑥2

′ = 𝐴 Ԧ𝑥2

Here (1) is the original eigenvalue equation for 𝜆 = 4 and Ԧ𝑣=
1

−2
and will not give us anything new

For (2), 𝐴 − 4𝐼 𝑢 = Ԧ𝑣 ⇒
−2 −1
4 2

𝑢1
𝑢2

=
1
−2

⇒ 2𝑢1 + 𝑢2 = −1

Choosing  𝑢1 = 𝐾 𝑠𝑎𝑦 ⇒ 𝑢2 = −2𝐾-1    or     𝑢 =
𝑢1
𝑢2

= 𝐾
1

−2
+

0
−1

Therefore, Ԧ𝑥2 𝑡 = 𝑡𝑒4𝑡
1
−2

+ 𝐾𝑒4𝑡
1
−2

+ 𝑒4𝑡
0
−1

⇒ Ԧ𝑥2 𝑡 = 𝑡𝑒4𝑡
1
−2

+ 𝑒4𝑡
0
−1

We drop the middle term as that is just a multiple of our first solution



The two solutions are then -

Ԧ𝑥1 𝑡 = 𝑒4𝑡
1
−2

and      Ԧ𝑥2 𝑡 = 𝑒4𝑡
𝑡

−2𝑡 − 1

Final Solution 

Ԧ𝑥 𝑡 = 𝑐1𝑒
4𝑡 1

−2
+      

𝑐2𝑒
4𝑡 𝑡

−2𝑡 − 1 Phase Portrait with 
(a) Unstable Equilibrium at the origin
(b) Double Eigenvalue at 𝜆1 = 𝜆2 =4
(c) A single eigenvector

The generalized eigenvector 𝒖
includes a variable 𝑡 and so 
cannot be drawn as a second 
stable vector on the phase 
portrait



Subsequent Lectures:

(i) Complex Eigenvalues

(ii) Particular solutions Ԧ𝑋𝑝 for systems of linear ODEs

(iii) Phase Portraits and Stability Analysis 


