Solutions to Systems of Linear Differential Equations (DE)

An n-dimensional linear first-order DE system is one that can be written as a matrix vector equation -

If $\vec{f}(t) \equiv \overrightarrow{0}$, the system is homogenous, i.e. $\quad \vec{X}^{\prime}(t)=A(t) \vec{X}(t)$

$$
\text { Example: } \begin{aligned}
x^{\prime} & =3 x-2 y \\
y^{\prime} & =x \\
z^{\prime} & =-x+y+3 z
\end{aligned} \quad \longleftrightarrow \overrightarrow{X^{\prime}}=\left(\begin{array}{ccc}
3 & -2 & 0 \\
1 & 0 & 0 \\
-1 & 1 & 3
\end{array}\right) \vec{X} \quad \vec{X}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

It may be easily verified that $\vec{x}_{h}=\left(\begin{array}{c}2 e^{2 t} \\ e^{2 t} \\ e^{2 t}\end{array}\right)$ is a solution to the system $\begin{aligned} & x^{\prime}=3 x-2 y \\ & y^{\prime}=x \\ & z^{\prime}=-x+y+3 z\end{aligned}$
Actually, it can be easily verified that $\left(\begin{array}{c}0 \\ 0 \\ e^{3 t}\end{array}\right)$ and $\left(\begin{array}{c}e^{t} \\ e^{t} \\ 0\end{array}\right)$ are also solutions to the same $\vec{X}_{h}^{\prime}=A \vec{X}_{h}$
Similarly, for the nonhomogenous ODE

$$
\begin{aligned}
& x^{\prime}=3 x-2 y+2-2 e^{t} \\
& y^{\prime}=x-e^{t} \\
& z^{\prime}=-x+y+3 z+e^{t}-1
\end{aligned} \quad \vec{X}^{\prime}=\left(\begin{array}{ccc}
3 & -2 & 0 \\
1 & 0 & 0 \\
-1 & 1 & 3
\end{array}\right) \vec{X}+\left(\begin{array}{c}
2-2 e^{t} \\
-e^{t} \\
e^{t}-1
\end{array}\right)
$$

$$
\vec{X}_{P}=\left(\begin{array}{c}
e^{t} \\
1 \\
0
\end{array}\right)
$$

The Superposition Principle for Homogenous Linear DE Systems

If $\vec{x}_{1}(t), \vec{x}_{2}(t), \ldots \ldots \ldots . \vec{x}_{n}(t)$ are linearly independent solutions to the homogenous equation $\vec{X}^{\prime}(t)=A(t) \vec{X}(t)$ then any linear combinations of these, i.e.

$$
c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+\ldots \ldots \ldots+c_{n} \vec{x}_{n}(t)
$$

is also a solution to that equation for any set of real constants $c_{1}, c_{2}, \ldots \ldots . ., c_{n}$

Using this Superposition Principle and the homogenous and particular solutions obtained earlier -

$$
\vec{x}(t)=\vec{x}_{h}(t)+\vec{x}_{p}(t)=c_{1}\left(\begin{array}{c}
0 \\
0 \\
e^{3 t}
\end{array}\right)+c_{2}\left(\begin{array}{c}
2 e^{2 t} \\
e^{2 t} \\
e^{2 t}
\end{array}\right)+c_{3}\left(\begin{array}{c}
e^{t} \\
e^{t} \\
0
\end{array}\right)+\underbrace{\left(\begin{array}{c}
e^{t} \\
1 \\
0
\end{array}\right)}_{\begin{array}{c}
\text { Linear combination of the three } \\
\text { independent solutions of the } \\
\text { homogenous equation }
\end{array}}
$$

We need to show that $\vec{x}_{1}=\left(\begin{array}{c}0 \\ 0 \\ e^{3 t}\end{array}\right), \vec{x}_{2}=\left(\begin{array}{c}2 e^{2 t} \\ e^{2 t} \\ e^{2 t}\end{array}\right), \vec{x}_{3}=\left(\begin{array}{c}e^{t} \\ e^{t} \\ 0\end{array}\right)$ are linearly
independent on $(-\infty, \infty)$

Step 1: Choose a point, say $t_{0}=0 \in(-\infty, \infty)$

Step 2: Calculate $\vec{x}_{1}\left(t_{0}\right), \vec{x}_{2}\left(t_{0}\right), \vec{x}_{3}\left(t_{0}\right)$ and form the column space matrix

$$
C=\left(\begin{array}{lll}
0 & 2 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

The columns of \boldsymbol{C} are obviously independent but we will confirm that in the next slide by computing rref (c)

Step 3: Test for linear independence of the columns of C by computing

$$
\operatorname{rref}(C)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Clearly, the column vectors of C must be linearly independent
Alternatively, this could have been shown by calculating and showing that $\operatorname{det}(C) \neq 0$

In general, for a $n \times n$ linear system, we need n linearly independent solutions $\vec{X}_{1}(t), \vec{X}_{2}(t), \ldots \ldots \ldots . \vec{X}_{n}(t)$
to form a basis for the solution space with the general solution to the homogenous system given by

$$
\vec{X}_{h}=c_{1} \vec{X}_{1}(t)+c_{2} \vec{X}_{2}(t)+\ldots \ldots \ldots+c_{n} \vec{X}_{n}(t) \quad c_{1}, c_{1}, \ldots \ldots \ldots c_{n} \in \mathbb{R}
$$

Fundamental Matrix:

Note that $\overrightarrow{X_{h}}$ can also be expressed as follows -

Fundamental Matrix $X(t)$ (continued)
(i) $\operatorname{det}(X(t)) \neq 0$

One can also show that

$$
X^{\prime}(t)=A X(t)
$$

(ii) The Fundamental Matrix is NOT unique

A different set of linearly independent solutions will produce a different $X(t)$ but that $\vec{x}_{h}=X(t) \vec{c}$ would hold

$$
\text { How do we find } \vec{x}_{h} \text { and } \vec{x}_{p} \text { for a System of Linear ODEs? }
$$

Consider the Homogenous Solution \vec{x}_{h} first, i.e. the solution of $\vec{X}^{\prime}=A \vec{X}$
If we choose solutions of the form $\vec{x}=e^{\lambda t} \vec{v}$,
then substituting in
gives

$$
\lambda e^{\lambda t} \vec{v}=A e^{\lambda t} \vec{v}
$$

Factoring this, we get

$$
e^{\lambda t}(A-\lambda I) \vec{v}=\overrightarrow{0}
$$

Since $e^{\lambda t}$ can never be zero, we need to find λ and \vec{v} such that $(A-\lambda I) \vec{v}=\overrightarrow{0}$

But a scalar λ and a non-zero vector \vec{v} satisfying $(A-\lambda I) \vec{v}=\overrightarrow{0}$ are the eigenvalue and eigenvector of the matrix A

Considering the eigenvalues of A, we will have three main cases -
(i) Distinct Real Eigenvalues
(ii) Repeated Real Eigenvalues
(iii) Complex Eigenvalues
for the eigenvalues of A in $X^{\prime}(t)=A X(t)$

Case (i): $X^{\prime}(t)=A X(t)$ has real eigenvalues $\quad \lambda_{1}, \lambda_{2}, \ldots \ldots . . \lambda_{n} \quad \lambda_{i} \neq \lambda_{j}$ for $i \neq j$ and the corresponding eigenvectors are $\vec{v}_{1}, \vec{v}_{2}, \ldots \ldots . ., \vec{v}_{n}$

Note that the eigenvalues are not repeated and, therefore, n independent eigenvectors can be found

For this case, the General Homogenous Solution is of the form -

$$
\vec{x}(t)=c_{1} e^{\lambda_{1} t} \vec{v}_{1}+c_{2} e^{\lambda_{2} t} \vec{v}_{2}+\ldots \ldots \ldots \ldots .+c_{n} e^{\lambda_{n} t} \vec{v}_{n}
$$

Note that in the case of repeated eigen values, i.e. $\lambda_{i}=\lambda_{j} i \neq j$, we will need either independent eigenvectors or generalized eigenvectors, as discussed later

Example Consider the following system of ODEs with initial conditions $x(0)=3, y(0)=1$

$$
\begin{aligned}
& \frac{d x}{d t}=-2 x+y \\
& \frac{d y}{d t}=x-2 y
\end{aligned} \quad \square \quad \vec{X}^{\prime}=\left(\begin{array}{rr}
-2 & 1 \\
1 & -2
\end{array}\right) \vec{X} ; \quad \vec{X}(0)=\binom{3}{1}
$$

For this, eigenvalues are $\lambda_{1}=-1, \lambda_{2}=-3$ and eigenvectors $\vec{v}_{1}=\binom{1}{1}, \vec{v}_{2}=\binom{1}{-1}$
General Solution: $\vec{x}(t)=c_{1} e^{-t}\binom{1}{1}+c_{2} e^{-3 t}\binom{1}{-1}$
Using the given initial condition $\vec{X}(0)=\binom{3}{1}=c_{1}\binom{1}{1}+c_{2}\binom{1}{-1} \Rightarrow c_{1}=2, c_{2}=1$

$$
\vec{x}(t)=2 e^{-t}\binom{1}{1}+e^{-3 t}\binom{1}{-1}
$$

Alternatively, $\vec{x}(t)=X(t) \vec{c}=\left(\begin{array}{cc}e^{-t} & e^{-3 t} \\ e^{-t} & -e^{-3 t}\end{array}\right)\binom{2}{1}=\binom{2 e^{-t}+e^{-3 t}}{2 e^{-t}-e^{-3 t}}$

- Trajectories move towards or away from the equilibrium according to the sign of the eigenvalues (-ive or +ive) associated with the eigenvectors
- Along each eigenvector is a unique trajectory called a SEPRATRIX that separates the trajectories curving one way from those curving the other way
- The equilibrium occurs at the origin and the phase portrait is symmetric about this point

Phase Portrait
(Stable Equilibrium at origin, solution from $(3,1)$ in grey)

Case (ii): $X^{\prime}(t)=A X(t)$ with repeated eigenvalues $\lambda_{1}, \lambda_{2}=\lambda$ and with only one eigenvector \vec{v}

Consider only 2×2 case for simplicity

Construct an additional linear independent vector $\overrightarrow{\boldsymbol{u}}$ as follows

Step (i): Find \vec{v} corresponding to λ
Step (ii) Find a new $\vec{u} \neq \overrightarrow{0}$ such that $(A-\lambda I) \vec{u}=\vec{v}$
Step (iii) With these, $\operatorname{try} \vec{x}(t)=c_{1} e^{\lambda t} \vec{v}+c_{2} e^{\lambda t}(t \vec{v}+\vec{u})$
\vec{u} is referred to as the Generalized Eigenvector of A
But it is not really an eigenvector as $A \vec{u} \neq \hat{\lambda} \vec{u}$

Why this approach works?

Let $\vec{X}_{2}(t)=e^{\lambda t}(t \vec{v}+\vec{u})$ where we are given that
(a) eigenvalue λ and eigenvector \vec{v} satisfy $(A-\lambda I) \vec{v}=\overrightarrow{0}$ and (b) $\vec{X}_{1}(t)=e^{\lambda t} \vec{v}$ is a solution of $\vec{X}^{\prime}=A \vec{X}$, i.e. $\vec{X}_{1}^{\prime}=A \vec{X}_{1}$

Show that $\vec{X}_{2}^{\prime}=A \vec{X}_{2}$ if we can find $\overrightarrow{\boldsymbol{u}}$ such that $(A-\lambda I) \overrightarrow{\boldsymbol{u}}=\overrightarrow{\boldsymbol{v}}$
Substituting, $e^{\lambda t}(\vec{v}+\lambda t I \vec{v}+\lambda I \vec{u})=e^{\lambda t}(t A \vec{v}+A \vec{u})$ and equating the coefficients of $t e^{\lambda t}$ and $e^{\lambda t}$ on the LHS and RHS of this equation, we get -

1. Coefficient of $t e^{\lambda t}: \quad(A-\lambda I) \vec{v}=\overrightarrow{0} \quad$ This is the original eigenvalue equation that we already had
2. Coefficient of $e^{\lambda t}: \quad(A-\lambda I) \vec{u}=\vec{v} \quad$ We need to solve this to find \vec{u} and use it to find

$$
\vec{X}_{2}(t)=e^{\lambda t}(t \vec{v}+\vec{u})
$$

Example: Consider $\vec{X}^{\prime}=A \vec{X}=\left(\begin{array}{rr}2 & -1 \\ 4 & 6\end{array}\right) \vec{X}$

Eigenvalue $\lambda=4$ (repeated)
Eigenvector $\vec{v}=\binom{1}{-2}$
One solution $\vec{x}_{1}(t)=e^{4 t}\binom{1}{-2}$

> If we follow the earlier approach of Lecture 1 of Module 3 then we should try our second solution as $\vec{x}_{2}(t)=t e^{4 t} \vec{v}$. However, substituting this $\vec{x}_{2}(t)$ in $\vec{X}^{\prime}=A \vec{X}$, we find that this does not work!

See Example 6, pg. 363 of Farlow textbook

Example: Consider $\vec{X}^{\prime}=A \vec{X}=\left(\begin{array}{rr}2 & -1 \\ 4 & 6\end{array}\right) \vec{X} \quad\left\{\begin{array}{l}\begin{array}{l}\text { Eigenvalue } \lambda=4 \text { (repeated) } \\ \text { Eigenvector } \vec{v}=\binom{1}{-2} \\ \text { One solution } \vec{x}_{1}(t)=e^{4 t}\binom{1}{-2}\end{array}\end{array}\right.$
Instead, we try a Generalized Eigenvector \vec{u} such that $\vec{x}_{2}(t)=e^{4 t}(t \vec{v}+\vec{u})$ is a solution to $\vec{x}_{2}^{\prime}=A \vec{x}_{2}$
This can be simplified to (1) $(A-4 I) \vec{v}=\overrightarrow{0} \quad$ and $\quad(2)(A-4 I) \vec{u}=\vec{v} \quad$ by equating the coefficients of $e^{4 t}$ and $t e^{4 t}$ on both sides of $\vec{x}_{2}^{\prime}=A \vec{x}_{2}$

Here (1) is the original eigenvalue equation for $\lambda=4$ and $\vec{v}=\binom{1}{-2}$ and will not give us anything new
For (2), $(A-4 I) \vec{u}=\vec{v} \Rightarrow\left(\begin{array}{rr}-2 & -1 \\ 4 & 2\end{array}\right)\binom{u_{1}}{u_{2}}=\binom{1}{-2} \Rightarrow 2 u_{1}+u_{2}=-1$
Choosing $u_{1}=K($ say $) \Rightarrow u_{2}=-2 K-1 \quad$ or $\quad \vec{u}=\binom{u_{1}}{u_{2}}=K\binom{1}{-2}+\binom{0}{-1}$
Therefore, $\vec{x}_{2}(t)=t e^{4 t}\binom{1}{-2}+K e^{4 t}\binom{1}{-2}+e^{4 t}\binom{0}{-1} \Rightarrow \vec{x}_{2}(t)=t e^{4 t}\binom{1}{-2}+e^{4 t}\binom{0}{-1}$
We drop the middle term as that is just a multiple of our first solution

The two solutions are then -

$$
\begin{aligned}
& \vec{x}_{1}(t)
\end{aligned}=e^{4 t}\binom{1}{-2}
$$

Final Solution

$$
\begin{array}{r}
\vec{x}(t)=c_{1} e^{4 t}\binom{1}{-2} \\
+ \\
c_{2} e^{4 t}\binom{t}{-2 t-1}
\end{array}
$$

The generalized eigenvector $\overrightarrow{\boldsymbol{u}}$ includes a variable t and so cannot be drawn as a second stable vector on the phase portrait

Phase Portrait with
(a) Unstable Equilibrium at the origin
(b) Double Eigenvalue at $\lambda_{1}=\lambda_{2}=4$
(c) A single eigenvector

Subsequent Lectures:

(i) Complex Eigenvalues
(ii) Particular solutions \vec{X}_{p} for systems of linear ODEs
(iii) Phase Portraits and Stability Analysis

