
Engineering Mathematics In Action Project-2
UNDERSTANDING EPIDEMICS

(MODELING WITH DIFFERENTIAL EQUATIONS)

Goal: A model to describe the spread of a disease in a population.

Getting Started :
• Open a new Jupyter notebook and save it as name_epidemicmodel.ipynb.
• Useful Python commands: sympy.dsolve, sympy.lambdify,

plot.subplots, for loop, numpy.arange, numpy.linspace, len,
plot.scatter,..., solve_ivp, plot.quiver, numpy.meshgrid

1. Conceptual Overview
Over the centuries, there have been several examples of how epidemics have signif-
icantly effect at humans. Some of the recent epidemics were AIDS, Covid-19, and
Ebola. If we can understand the nature of how a disease spreads through a popula-
tion, then we can be better equipped to contain it through vaccination or quarantine
strategies. Alternatively, in the case of the biological control of pests, we may wish
to determine how to increase the spread of the disease (for example, myxomatosis or
calicivirus in rabbits) so as to find an efficient way of reducing the population. Un-
fortunately, humans themselves have been subjected to this means of control. Many
diseases are spread by infected individuals in the population coming into close contact
with susceptible individuals. These include influenza, measles, chickenpox, glandular
fever and Covid-19. On the other hand, malaria is transmitted through a host, a
mosquito, which carries the disease from individual to individual. Certain diseases are
more contagious than others. Measles and influenza are highly contagious, whereas
glandular fever is much less so. Many diseases, such as mumps and measles, confer a
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lifelong immunity; however, influenza and typhoid have short periods of immunity and
can be contracted more than once.
Model assumptions. When considering a disease, the population can be divided
into distinct groups: susceptibles S(t), contagious infectives I(t) and recovers R(t),
where t denotes time. The susceptibles are those liable to catch the disease, while
the infectives are those infected with the disease who are capable of spreading it to
susceptibles. There are also those who have recovered from the disease and are no
longer susceptible, who form a further separate group.
Initially, we make some assumptions and then build the model based on them:

• We assume that the populations of susceptibles and contagious infectives are
large so that random differences between individuals can be neglected.

• We ignore births and deaths in this model and assume the disease is spread by
contact.

• We neglect the latent period for the disease, setting it equal to zero.
• We assume all those who recover from the disease are then immune (at least

within the time period considered).
• We also assume that, at any time, the population is homogeneously mixed; that

is, we assume that the contagious infectives and susceptibles are always randomly
distributed over the area where the population lives.

Compartmental model. The only way the number of susceptibles can change is
the loss of those who become infected, as there are no births, and none of those who
become contagious infectives can become susceptibles again. The number of infectives
changes due to the susceptibles becoming infected and decreases due to those infectives
who die, become immune or are quarantined. The latter cannot become susceptibles
again (from the assumptions made). This is illustrated in the below compartmental
diagram.

The appropriate word equations are
rate of
change in no.
susceptibles

 = −


rate of

susceptibles
infected

 (1.1)


rate of
change in no.
infectives

 =


rate

susceptibles
infected

 −


rate of

infectives
recovered

 (1.2)


rate of
change in no.
of recovered

 =


rate of

infectives
recovered

 (1.3)

We must account for those removed from the system, in this case, those who have
recovered from the disease. More generally, the removed can also consist of fatalities
due to the disease, those who become immune to the disease, and those infectives
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who are quarantined. The number of infectives removed in the time interval should
not depend in any way upon the number of susceptibles, but only on the number of
infectives. We assume that the rate at which infectives recover is directly proportional
to the number of infectives and write

rate of
infectives
recovered

 = γI(t). (1.4)

where γ is a positive constant of proportionality, called the recovery rate, or more
generally, the removal rate.
To model the total rate of susceptibles infected, first consider the susceptibles infected
by a single infective. It is evident that the greater the number of susceptibles, the
greater the increase in the number of infectives. Thus, the rate of susceptibles infected
by a single infective will be an increasing function of the number of susceptibles.
For simplicity, let us assume that this rate is directly proportional to the number of
susceptibles. If we denote the number of susceptibles at time t by S(t), then the rate
at which susceptibles are infected is λ(t)S(t). Note, it is not necessary to treat λ as a
constant. The total rate that susceptibles are infected is

rate of
susceptibles
infected

 = λ(t)S(t). (1.5)

Later, we will find a suitable dependence for λ on the number of infectives. The term
λ(t) is called the force of infection. We can also interpret λ(t) as the instantaneous
probability per unit time of a single susceptible becoming infected, and thus, λ(t) =
βI(t). where β is called a transmission coefficient.
Using the word equations (1.1),(1.2),(1.3),(1.4) and (1.5), we can write,

rate of
change in no.
susceptibles

 = −βS(t)I(t)


rate of
change in no.
infectives

 = βS(t)I(t) − γI(t)


rate of
change in no.
of recovered

 = γI(t)

Hence, we can also write the governing equations as
dS

dt
= −βSI (1.6)
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dI

dt
= βSI − γI (1.7)

dR

dt
= γI (1.8)

Use the above model to answer the following questions.

Question 1. Draw the direction field and the solution trajectories of the given system
(1.6),(1.7) on the phase plane with 44% recovery rate and transmission coefficient equal
to 2.18 × 10−3 (you may either do it analytically or write a code in Python). For
reference, the following pseudo code may be helpful.

Algorithm
// Input: ODE system, Initial Values, time interval, step-size
// Output: Plot the solution trajectories and direction fields

Step1: Import the libraries
use numpy, sympy, scipy.integrate, matplotlib.plot

#Plot the solution trajectories

Step2: Define the given system in the form of lambdify generated function

Step3: Input the interval of integration

Step4: Create an array for various initial conditions

Step5: Define the discrete-time space
use np.linspace, np.arange

Step6: for i from 1 to length of array in Step4
solve _ ivp
plot the solution trajectories

end for

#Plot the direction field

Step7: Define a function containing the system of differential equations

Step8: Find the maximum value of the plotted trajectories in Step6 over the x-axis and y-axis

Step9: Create a discrete space for x and y upto the obtained maximum values in Step8

Step10: Create a meshgrid using the discrete spaces obtained in Step9
use np.meshgrid

Step11: Find the slopes of functions using defined function in Step7 over the values of meshgrid obtained in Step10

Step12: Normalize the obtained slope points

Step13: Plot the direction field as an arrows from the point in meshgrid to the obtained slope points
use plot.quiver(starting position points, slope direction points)
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Note: You may refer to the python code available on the course website for the nu-
merical solvers (Euler, rk2, rk4, and ode45).

Question 2. Using Euler, RK-2, RK-4 and ode45 methods, solve the given system
(1.6),(1.7), and (1.8) numerically with 44% recovery rate and transmission coefficient
equal to 2.18 × 10−3 over the interval [0, 10.5] with step size 0.7 using the initial con-
ditions S(0) = 762, I(0) = 800 and R(0) = 0.

Question 3. Choose the suitable value of transmission coefficient for which the given
system (1.6),(1.7), and (1.8) becomes a linear system and then solve the linear system
analytically. Also, verify your answer using dsolve.

Question 4. Modify the program in question (3), to find the particular solution of
the linear system with a 44% recovery rate. Use the initial conditions S(0) = 762,
I(0) = 800 and R(0) = 0. Plot the particular solution. Repeat this exercise using a
numerical solver of your choice and compare the results by overlaying the solution on
the same graph.

Question 5. Compare the numerical solution of the given non-linear system with the
analytical solution of the linearized system obtained in question (3) by plotting for the
time interval [0, 10.5]. Comment on any disparity that you may observe.
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