
Discrete Time Markov Chains



Mini Project for Module – 

Automatic Prediction of Control Laws of an Aircraft using the 
Viterbi Algorithm 



Markov Chain (Definition) 

A Markov Chain (or equivalently, a Markov 
Process) is a stochastic (i.e., random) process 
describing a series of possible events, where the 
probability of an event at a given instant depends 
only on the outcome of the previous event.

States (Weather)  
Sunny 
Rainy 
Cloudy

P{Cloudy

Sunny}=0.2
→

P{Cloudy Cloudy}

=0.3
→

 

Knowing the weather right now, we can use a model 
like this to make a prediction about what the 
weather is likely to be the next time we check it



A (Simplified) Networking Example 𝑡𝑖𝑚𝑒

• Slot can carry one packet of data 
correctly; transmission fails if 
multiple users transmit in a slot 

• Users with a packet of data  to send 
randomly decide whether to 
transmit in a slot 

• Transmissions which fail are retried 
in another randomly chosen slot 
until success 

• A user does not generate a new 
packet until the previous one is 
transmitted 

“Thinking Users” 
(Have not yet generated packets to send)

Users trying to 
send a packet for 

the first time

Users trying to 
retransmit a previously 

failed packet

Channel

Channel



We consider only Discrete Time Markov Chains in this course, where the outcomes 
are events occurring at discrete instants of time. The occurrence of a particular 
event  at any instant of time depends only on the previous event (at the previous 
instant of time) and does not depend directly on any earlier event. 

One can also have Continuous Time Markov Chains where states move continuously 
through time rather than in discrete time steps 

∆ 𝑡

𝑇4

Time

Time𝑇3𝑇2𝑇1

Continuous Time

Discrete Time
We do not care/know what happens 
in-between the observation instants



Something Interesting!                                                  Hidden Markov Model (HMM)

Underlying Markov Model which is 
not directly observable (i.e., Hidden)

Observation Layer visible from outside

Hidden Markov models are known for their 
applications to thermodynamics, statistical 
mechanics, physics, chemistry, economics, 
finance, signal processing, information theory, 
pattern recognition etc..



Discrete Time Markov Chain 

We denote a sequence of events as  where the subscript 

 is a non-negative integer that indexes time, is a random variable 
which may take values from a set of possible outcomes (events)  

Then  describes a Markov Chain when 

{𝑋𝑛}𝑛∈𝐼,𝑛≥0
,

𝑛 𝑋𝑛

𝒮 = {𝑥0, 𝑥1, … . .  }

{𝑋𝑛}( ) ( )1 1 2 2 0 0 1 1| , ,......., |n n n n n n n n n nP X x X x X x X x P X x X x− − − − − −= = = = = = =

Current state depends only 
on the previous state and not 

on states earlier than that

A Markov Process is therefore 
characterized to be a Memoryless 
Process



Something useful (on Markov Chains)
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1. Probability of a Sequence of States (LHS) is the continued product of state transition 
probabilities multiplied by the initial state probability (RHS) 

2. Easy to calculate this using the logarithms of each term



Stochastic Matrix (or Probability Transition Matrix)    

ℙ =  {𝑝𝑖𝑗}𝑝𝑖𝑗 = 𝑃(transition from state 𝑖 to state 𝑗 in one step)
         = 𝑃(𝑋𝑛+1 = 𝑗 |𝑋𝑛 = 𝑖)     ∀𝑛

Property of Stationarity or Time-Homogenity : This implies that the (one step) 
transition probability depends only on the end-states and but not on when the 
transition actually occurs, i.e., it does not depend on n. 
  
The probability axioms also imply that  

since system has to go to some state j from state 

𝑖  𝑗 

∑
∀𝑗

𝑝𝑖𝑗 = 1

𝑖



Example:  Gambler’s Ruin 

Gambling game where in each step, the player wins Rs. 1 with probability p=0.4 or loses Rs. 1 with 
probability  

The player’s strategy is to quit when he/she makes a “fortune” of $ 10. The player gets thrown out of 
the casino when he/she runs out of money

𝑝ℂ = (1 − 𝑝) = 0.6

Let Xn=Amount of money the player has after n plays    

Then for , we have 

and similarly, 

𝑖,  𝑖 = {1,2,  ……9} ( )
( )

1 1 1 0 0

1 , 1

1| , ,.......,

1| 0.4
n n n n

n n i i

P X i X i X i X i

P X i X i p
+ − −

+ +

= + = = =

= = + = = =
, 1 0.6i ip − =

We also observe that -  
          cannot play any more when no money is left 
                     and     1     cannot accumulate more than Rs. 10

𝑝0,0 = 1
𝑝10,10 =

States 0 and 10 are 
Absorbing States

Absorbing States are states from which one cannot move to another state



Example:  Gambler’s Ruin  ………… continued………… 

The Stochastic Matrix  (also called the State Transition Matrix) for this is given by -

Note that these give 
the One-Step State 
Transition Probabilities 
from state to state  
for this Markov Chain

 𝑖  𝑗

Absorbing 
State

You can enter the state, but you can never leave it! 
Sort of like the Eagles’ “Hotel California” song!



This should bring back fond memories of “The Misadventures of Squeaky”

State Transition 
Matrix

0 1 2 8 9 10

0.6 0.6 0.6

0.4 0.4 0.4

The state transition matrix can also 
be represented by the following 
State Transition Diagram



Question: Consider a simplified version of the earlier matrix  (Maximum Amount of Win=3)

1 0 0 0
0.6 0 0.4 0
0 0.6 0 0.4
0 0 0 1

P

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

2

1 0 0 0
0.6 0.24 0 0.16
0.36 0 0.24 0.4
0 0 0 1

P

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

3

1 0 0 0
0.744 0 0.096 0.16
0.36 0.144 0 0.496
0 0 0 1

P

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

One Step Transition Probability Matrix

Two Step Transition Probability Matrix

Three Step Transition Probability Matrix

…………..See next slide for the corresponding state diagrams



1 0 0 0
0.6 0 0.

0       1  

4 0
0 0.6 0 0.4

     2  

0 0 0 1

    3
0
1
2
3

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

States 0 and 3 are absorbing states 

System in those states will stay there 
for ever

System starting in States 1 or 2 will move 
from one state to another but will 
eventually land in an absorbing state

2

3

1 0
0.6

0.4

0.6

0.4
1

0

2 30.6

0.6

0.4
0.4

𝑃1→0 =
0.6

1 − (0.6)(0.4)
= 0.7895

𝑃1→3 =
(0.4)(0.4)

1 − (0.6)(0.4)
= 0.2105

𝑃2→3 =
0.4

1 − (0.6)(0.4)
= 0.5263

𝑃2→0 =
(0.6)(0.6)

1 − (0.6)(0.4)
= 0.4737

If I start in state 1  (state 2) , what will be the average number of steps for me to reach the absorbing 
state 0 (state 3) ? ………….   think about how you can calculate these! 

The answers are   𝑇1→0 = 1.2881   𝑇1→3 = 0.5540     𝑇2→0 = 1.2465   𝑇2→3 = 0.8587 

2(0.6) (0.4 0.6)(0.6) (0.4 0.6) (0.6).......+ × + ×



Multi-Step Transition Probabilities may also be given as the probabilities of 
transition between states in more than one step,  

e.g., the probability of transition from state  to state  in  ( ) steps -𝑖 𝑗 𝑚 𝑚 > 1

{ }( ) ( )
, ( , ) | ; 1m m
i j n m np p i j P X j X i m+= = = = > component of (𝑖,  𝑗)𝑡h ℙ𝑚

In general,    =P{going from  to  in 1 step} 

                     =P{going from  to  in 2 steps} 

……. 
……. 

    =P{going from  to  in  steps} 

……. 
…….

ℙ = {𝑝𝑖𝑗} 𝑝𝑖𝑗 𝑖 𝑗

ℙ(2) = {𝑝(2)
𝑖𝑗 } 𝑝(2)

𝑖𝑗 𝑖 𝑗

ℙ(𝑛) = {𝑝(𝑛)
𝑖𝑗 } 𝑝(𝑛)

𝑖𝑗 𝑖 𝑗 𝑛



Example: Social Motility

Let Xn represent the social class of a family in the nth generation where we consider that there are 
broadly three social groups based on income, viz., lower=1, middle=2, upper=3.  

Based on a certain demographic and per capita income analysis, the motility within this society 
was captured succinctly by the following stochastic matrix.

State Transition Matrix



Example: Social Motility …… continued…….

If Ginny’s parents (X0) were of 
the middle income (2) class, 
what is the probability that 
Ginny herself (X1) belongs to 
the upper income (3) class and 
her children (X2) belong to the 
lower income (1) class. We 
essentially need to find 
𝑃(𝑋2 = 1,𝑋1 = 3 |𝑋0 = 2)

Note that this may be found directly by multiplying the probabilities of 
the successive transitions  2→3 and 3 →1, i.e.   0.2x0.2 = 0.04

( )

( ) ( )

( ) ( )

2 1 0

2 1 0 1 0

2 1 1 0

31 23

.............  applying Baye's Rule .............. 

1, 3 | 2

1| 3

.............  using the Markov Property ...

, 2 3 | 2

1| 3 3

..........

| 2

. 

P X X X

P X X X P X X

P X X P X X
p p

= = =

= = = = = =

= = = = =

=

Read your online textbook for a somewhat longer but more detailed explanation

{ , | } { | , } { | }P C B A P C B A P B A=



Example: Social Motility …… continued…….

ℙ2 =
0 . 57 0.28 0.15
0.4 0.39 0.21
0.34 0.4 0.26

Example:  

(a) Probability of going from Lower (1) to Upper 
(3)  in two generations is given by the (1, 3) 
element of , i.e. 0.15 

(b) Probability of going from Upper (3) to Lower 
(1) in two generations is given by the (3, 1) 
element of ,  i.e. 0.34

ℙ2

ℙ2

We can directly use the elements of this 
matrix to find the probability of a particular 
transition happening in TWO Generations

1,2 2,3 1,1 1,3 1,3 3,3

0.2 0.2 0.7 0.1 0.1 0.4
0.15

p p p p p p+ +

= × + × + ×

=

3,2 2,1 3,1 1,1 3,3 3,1

0.4 0.3 0.2 0.7 0.4 0.2
0.34

p p p p p p+ +

= × + × + ×

=



Chapman-Kolmogorov Equation Multi-Step Transition Probabilities 
for a Markov Chain

, , ,
m n m n
i j i k k j

k
p p p+

∀

=∑
Probability of transitioning from state  to state 
 by passing through  an intermediate state . 

The state  can be any state of the system.

𝑖
𝑗 𝑘

𝑘

( )
( )

( ) ( )

, 0

0

0 0

, ,

, ,

|

, |

| , |

m n
i j m n

m n m
k S

m n m m
k S

n m
k j i k

k S
m n
i k k j

k S

p P X j X i

P X j X k X i

P X j X k X i P X k X i

p p

p p

+
+

+
∈

+
∈

∈

∈

= = =

= = = =

= = = = = =

=

=

∑

∑

∑

∑ This is exactly what we saw happen in 
the example of a 2-step probability 
calculation that we did in the last slide



Chapman-Kolmogorov Equation

These may also be written in the following forms which have special names – 

Forward C-K Equation    for =1,2……. 

     to in  steps and  to  in  step 

Backward C-K Equation   for =1,2……. 

     to in  steps and  to  in  steps 

𝑝(𝑛+1)
𝑖𝑗 = ∑

𝑘

𝑝(𝑛)
𝑖𝑘 𝑝𝑘𝑗 𝑛

𝑖 𝑘  𝑛 𝑘 𝑗 𝑜𝑛𝑒

𝑝(𝑛+1)
𝑖𝑗 = ∑

𝑘

𝑝𝑖𝑘𝑝(𝑛)
𝑘𝑗 𝑛

𝑖 𝑘  𝑜𝑛𝑒 𝑘 𝑗 𝑛



Distribution of the States of a Markov Chain 

Given   (a) A Markov model with a stochastic matrix  (i.e. the state transition matrix),  
and      (b) The initial state probability distribution 

We may be interested in finding the state probability distribution 
              (a) At some later instant of time  (i.e., after  steps, 0) 
and/or  (b) After a long time (i.e., )

ℙ

𝑛 𝑛 ≥ 1
𝑛 → ∞

Consider a Markov Chain with   states and initial state distribution 
–

𝑘 {𝑠1,  𝑠2,  ………,  𝑠𝑘} 

( ) ( )(0) (0) (0) (0)
1 2 01 1 0

0
2

(
2

)

1
0, ,....., ( ), ( ),... ( ) 1...,

k

i
i

k k kP X s P X s P X sµ µ µµ µ
=

= == = = = ∑
! Normalization 

Condition

Here, the 0’s represent the initial time instant and the indices  refer to the 
states 

Then,   is the state distribution after   steps and by taking the limit  , we 
can find the state distribution after a long time.

𝑖 = {1,2, …, 𝑘}

→𝜇 (𝑛) = →𝜇 (0)ℙ𝑛 𝑛 𝑛 → ∞



Note that the state distribution after a long time,  , will also be 

the system state at equilibrium,  

Therefore,       

This equation can be directly solved to find the state distribution after a long 
time, i.e., when the system has reached its equilibrium

i . e . ,  𝑛 → ∞
→𝜇 (∞)

→𝜇 (∞) = →𝜇 (∞)ℙ



Example:  A Simple Weather Model 

The weather is either RAINY (R) or SUNNY (S). It stays the same tomorrow as it is today with 
probability 0.75 and changes with probability 0.25.

Therefore, 
  
  P(R R)=P(S S)=0.75  
and  P(R S)=P(S R)=0.25   

This gives us the stochastic matrix

→ →
→ →

We can then calculate -

This is what happens as 
.  

We can also calculate 
this by using the results 
of the last slide!

𝑡 → ∞



Example: Markov Model of a Badminton Game (Deciding the Winning Strategy) 

Consider a Markov model of a game of badminton. For simplicity, let us consider that a  player 
chooses to play one of three shots, viz., smash (S), drop (D), and lift (L). The objective is to devise 
a winning strategy given a match situation. Based on the data generated over several games, the 
following table lists the probability (P) of a return shot played by a player given a certain type of shot 
played by their opponent.

Played Shot Return Shot P

D D 1/3

D L 1/3

D S 0

L D 1/5

L L 1/5

L S 2/5

S L 2/5

S D 1/5

S S 0

Questions: 

1. Identify an appropriate state space for the Markov 
Model 

2. Construct the stochastic matrix  
3. Given a lifted serve, what are the chances that there is a 

winner in THREE shots 
4. In a rally, if a player receives a lift from their opponent, 

which shot option maximizes his chance of winning the 
rally in the return shot?

ℙ



Example: Markov Model of a Badminton Game ……….. continued………… 

1. State Space,  where is the winning  shot 

2. The stochastic matrix  may be computed using the data table 

3. Looking at the matrix  the probability of the L→W transition  
     (in three shots) is 0.6142 

4. Starting from X0=L, we want to find the choice of X1 such that the 
     the probability of X2=W is the highest 
     i.e. X1 such that  is the highest 

     We find that (pLD x pDW , pLS x pSW , pLL x pLW) =(0.06667, 0.16, 0.04) 

     Therefore, playing a “Smash” in return for the “Lift” would be the best strategy to win this rally

𝒮 = {𝐷,  𝐿,  𝑆,  𝑊 } 𝑊

ℙ

ℙ3

𝑃 (𝑋2 = 𝑊, 𝑋1 |𝑋0 = 𝐿)

ℙ3 =

0.1215 0.1481 0.0711 0.6593
0.1316 0.1476 0.1067 0.6142
0.1102 0.1422 0.0587 0.6889
0 0 0 1



Recurring Events in a Markov Chain

In a finite state system with stochastic transitions between the states, some states (i.e., events) 
of the Markov Chain may be visited multiple times, repeatedly, where the number of steps 
between successive visits may itself be a random number. 

Example:  

Consider the teller in a bank where customers queue for service and are served one by one. 
The customers arrive randomly and require a random amount of time to be serviced. The state 
at any instant of time is given by the number of customers in the system at that time. 

The manager of the bank would be particularly interested in the probability of the teller being 
idle (because there are no customers in the system). This state 0 is then a recurrent state whose 
recurrence times indicates the times when the teller is left idle (until the arrival of the next 
customer.) The teller may ask for a raise if he or she is being worked too hard, but he/she may 
be getting paid too much if not worked hard enough!

We should point out that instead of a Discrete Time Markov Chain, it would be better to model this as a 
Continuous Time Markov Chain which is something that we will discuss later.



Hitting Probability for a State (Definition) 

Let  represent a Markov Chain with state space . Let . We further define – 

 = first time the chain hits set  starting from a state outside (or inside)  

with  and  (return to A in an infinite number of 

steps)

{𝑋𝑛}0,𝑛∈{0, 𝕀+}
𝒮 𝐴 ⊂ 𝒮

𝑇𝐴 ≔ min{𝑛 ≥ 0 |𝑋𝑛 ∈ 𝐴} 𝑨 𝑨

𝑇𝐴 = 0 if 𝑋0 ∈ 𝐴 𝑇𝐴 = ∞ if {𝑛 ≥ 0 𝑋𝑛 ∈ 𝐴} = {}

Then, the probability of hitting state  for the first time, after time TA , starting from state  at time 0, is 

        =initial state, =final state

𝑙 𝑘

𝑔𝑘(𝑙) = 𝑃(𝑋𝑇𝐴
= 𝑙 |𝑋0 = 𝑘) 𝑘 𝑙

For the example of the bank teller, if we find that  for any , then the likelihood of the 
teller becoming idle starting from any state is 0. The teller is definitely overworked, and the manager 
needs to increase the number of tellers. 

𝑔𝑠(0) = 0 𝑠 > 0



Calculating the “hitting probability” iteratively

Let  where “ ”   i.e., the set  minus the contents of set  

For  given , we have -

𝑘 ∈ 𝒮\𝐴 𝒮\𝐴 ≡ 𝒮 − {𝐴} 𝒮 𝐴

𝑇𝐴 ≥ 1 𝑋0 = 𝑘

{ } { }

{ } { }

{ } { }

0 1 0

1 0 1 0

1 1 0

| , |

| , |

|

( )

( )

|

( \ ,)
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P X l X m X k P X m X k
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p g l k Sl A lg p A

∈

∈

∈

∈∈

= = = = = = =

= = = = =

= ∈

=

= = = = =

= ∈∑

∑

∑

∑

∑

Sum over partitioning events

Applying the law of total probability

Markov Property

Transition from state  to state  and then from 
state  to state to go from state k to state 

𝑘 𝑚
𝑚 𝑙  𝑙

Rearranging the order of the terms





Example:

   state 4 unreachable from state 1 

=1 

𝑔1(4) = 0

𝑔2(4) =
1
2

𝑔1(4) +
1
2

𝑔3(4)

𝑔3(4) =
1
2

+
1
2

𝑔2(4)

𝑔4(4)

   Solve, to get  

𝑔2(4) =
1
3

  

𝑔3(4) =
2
3

  

Note that  states 1 and 4 are absorbing states.  

An Absorbing State is one where, once the 
system enters such a state, it cannot 
subsequently move to any other state.



Iterative Formula for Mean Hitting Times and Mean Absorption Times

Consider the random variable giving the time duration (number of steps) from a state  to the set 
 . The mean of this random variable will be – 

Mean Hitting Time from state  to :      

           Further for  

𝑘
𝐴,  𝐴 ⊂ 𝑆

𝒌 𝑨 h𝑘(𝐴) = 𝐸(𝑇𝐴 |𝑋0 = 𝑘)  h𝑘(𝐴) = 0  ∀𝑘 ∈ 𝐴 ⊂ 𝑆
∀𝑘 ∈ 𝑆 \𝐴
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( ) ( )

( ) ( )
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0 1 0
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1 1
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\

( ) | , |
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m A m S A m S m S A
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m S A m A

m m i
i S

h A E T X k E T X m X k

E T X m X k P X m X k

E T X m p E T X m p

p h A p p h A

h A h A mp p p

p

h A

p

A

∈

∈

∈ ∈

∈ ∈ ∈ ∈

∈ ∈ ∈

= = = = =

= = = = =

= = + =

= + + = +

= + +

= +

= ∈ =

∑

∑

∑ ∑

∑ ∑ ∑ ∑

∑∑ ∑
( ) for all  \km m

m S
h A k S A

∈

∈∑

Sum over partitioning events

Applying the law of total expectation

Markov Property

1 1 ( )mh A+ Markov Chain has moved 1 step in both cases, and 
counting is reset once again for the second case



First Return Time and its Mean

The time (in number of steps) taken to make a FIRST RETURN to a certain state   defined as -𝑦 ∈ 𝑆

{ }: min 1| ;r
y nT n X y y S= ≥ = ∈

with 
0if 1 Note  if r r

y n y yT X y n T T X y= ∞ ≠ ∀ ≥ = =

Using this, we can define the Mean Transit Time  from state  to state  as 

and derive as before that    

Note that when , this would define the Mean First Return Time 

𝜇𝑥(𝑦) 𝑥 𝑦

𝜇𝑥(𝑦) = 𝐸(𝑇 𝑟
𝑦 |𝑋0 = 𝑥) ≥ 1

            𝜇𝑥(𝑦) = 1 + ∑
𝑚∈𝑆, 𝑚≠𝑦

𝑝𝑥𝑚𝜇𝑚(𝑦)

𝑥 = 𝑦



Example: Return Times in a game of badminton 

Let us divide each side of a badminton court into two quadrants (play 
zones) labelled 1 and 2 as shown. These quadrants may be 
regarded as states of a simple Markov model. Data collected over 
several games of badminton may enable us to populate a simple 
stochastic matrix as follows.

1. During a rally, given a shot by a player from play zone 1 , after how many shots (on an average) does 
the shuttle return to quadrant 1 on either side of the net?

Now, let us re-define the Markov chain by constructing new states corresponding to the direction of shots 
played. For example, the states of the new model are 11 (corresponding to a shot 1 →1) and so on.

2. Construct the stochastic matrix  for this new model.

3. Given a valid service 1 → 1, what is the average number of shots before either player can expect a shot 
2 → 1 from their opponent?

ℙ𝑛𝑒𝑤



Solution: Return Times in a game of badminton 

1. Using the one-step stochastic model , we can write the following based on 

our earlier equation 

ℙ
            𝜇𝑥(𝑦) = 1 + ∑

𝑚∈𝑆, 𝑚≠𝑦

𝑝𝑥𝑚𝜇𝑚(𝑦)

1 12 2 2

2 22 2 2

1(1) 1 (1) 1 (1)
3
2(1) 1 (1) 1 (1)
3

p

p

µ µ µ

µ µ µ

= + = +

= + = +

Solving, we get  

The result  implies that, on an average, every second shot in a rally 
returns to 1, given a serve from 1.

𝜇2(1) = 3,𝜇1(1) = 2

𝜇1(1) = 2

…. and from first principles….. 

( ) ( )
( ) ( )

1 11 12 2 12 2

2 21 22 2 22 2

(1) 1 1 (1) 1 (1)

(1) 1 1 (1) 1 (1)

p p p

p p p

µ µ µ

µ µ µ

= + + = +

= + + = +



Solution: Return Times in a game of badminton 

2. We now construct . The relevant states are 11 , 12 , 21 , and 
22 . 

     For example, for a state transition 11 → 11 , the following 
sequence of
     shots must be played: 1 → 1 followed by 1 → 1. 

     Note that the naming convention of the states is set up in such a 
way that       
     the last numeral of the current state must be the same as the first 
     numeral of the next state. 

    This means transitions like 11 → 21 , 21 → 22 , etc. are not 
possible.

The transition 11 →11 means that after a shot from 1 to 1, the return 
shot is chosen to be from 1 to 1 with probability 2/3 

.
The transition 12 →22 means that after a shot from 1 to 2, the return 
shot is chosen to be from 2 to 2 with probability 2/3 

.

ℙ𝑛𝑒𝑤

⟹ 𝑃 (11 → 11) = 2/3

⟹ 𝑃 (12 → 22) = 2/3



3. Given a valid service 1 → 1, what is the average number of shots before either player 
can expect a shot 2 → 1 from their opponent?

Using the equation  once again with the states 11, 12, 21, 22 as 

defined earlier, we get the following system of equations

 𝜇𝑥(𝑦) = 1 + ∑
𝑚∈𝑆, 𝑚≠𝑦

𝑝𝑥𝑚𝜇𝑚(𝑦)

Solution: Return Times in a game of badminton 

11 11 12

12 22

22 22

2 1(21) 1 (21) (21)
3 3
2(21) 1 (21)
3
2(21) 1 (21)
3

µ µ µ

µ µ

µ µ

= + +

= +

= +

These can be solved to get – 

𝜇22(21) = 3
𝜇12(21) = 3
𝜇11(21) = 6

Therefore, given a valid serve 1 → 1, either player will have to wait 6 shots on an average 
before they may expect a shot 2 → 1  from their opponent



Classification of Markov States and Advanced Topics

The behavior of a Markov Chain is characterized by the properties of the 
stochastic matrix  and its states. 

The states of a Markov Chain can be classified based on the entries of 

ℙ

ℙ



Communicating States

A state  is accessible from a state , i.e., , if there exists a finite integer  such 

that  ….. i.e., it is possible to go from state  to state  

If  and , then , i.e., states  and  communicate.  
When states communicate with each other, they are said to belong to the same class.

𝑗 ∈ 𝒮 𝑖 ∈ 𝒮 𝑖 → 𝑗 𝑛 ≥ 0
𝑝𝑛

𝑖𝑗 ≔ 𝑃(𝑋𝑛 = 𝑗 |𝑋0 = 𝑖) > 0 𝑖 𝑗 .

𝑖 → 𝑗 𝑗 → 𝑖 𝑖 ↔ 𝑗 𝑖 𝑗

Example:

•  even though 

•  even though  because 2
4 and 4 3 transitions can happen.  

      3  can also happen

3 ↔ 3 𝑝33 = 0
2 ↔ 3 𝑝23 = 0 →

→
→ 2



Irreducible and Reducible Markov Chains:

A Markov Chain is irreducible if all states belong 
to one class, i.e., if all states communicate with 
each other as in the example given below

An Irreducible Markov Chain is also Ergodic, 
i.e., its time averages will be the same as its 
stochastic averages

In this Markov model, 
state 3 is an absorbing 
state and does not 
communicate with states 1 
and 2. This Markov Chain 
is not irreducible.



Mean Number of Returns to a State

Let  for some  be the 

probability of return to state  in a finite time starting from 
state . 

We define the number of visits to state  by the chain 

 as shown. 

• The first visit to state  from state  must happen in  
steps with probability  

• This must be followed by revisits to state starting 

from state  with probability . This is true because the 

count for the re-visits to state happens beginning with 
state  as the chain is reset as  after the first visit to 
state . 

• Since the summand of interest pertains to  visits to state 
(and no more), we must account for the probability  

 of no additional visits to state  after the visit

𝑞𝑖𝑗 = 𝑝𝑛
𝑖𝑗 = 𝑃(𝑋𝑛 = 𝑗 |𝑋0 = 𝑖) 𝑛 ≥ 1

𝑗
𝑖

𝑗

{𝑋𝑛}𝑛∈𝐼,𝑛≥0

𝑗 𝑖 𝑛 ≤ 𝑚
𝑞𝑖𝑗

𝑚 − 1  𝑗 
𝑖 𝑞𝑚−1

𝑗𝑗

𝑗 
𝑗 𝑋0 = 𝑗
𝑗

𝑚
𝑗 

(1 − 𝑞𝑗𝑗) 𝑗 𝑚𝑡h

( ) ( )

( )

0 0
0

1 1

1 1

1
2 2

1

| |

(1 ) (1 )

1 1
(1 ) using for 1

(1 )1

(1 )

j j
m

m m
ij jj jj jj ij jj

m m

m
jj ij

mjj

ij

jj

E R X i mP R m X i

mq q q q q mq

q q mr r
rq

q
q

∞

=

∞ ∞
− −

= =

∞
−

=

= = = =

= − = −

= − = <
−−

=
−

∑

∑ ∑

∑



Recurrent States 

State  is recurrent if  Additionally,  

 1. State  is recurrent if and only if  

 2. State  is recurrent if and only if 

𝑖 ∈ 𝒮 𝑞𝑖𝑖 = 𝑝𝑛
𝑖𝑖 = 1.

𝑖 𝐸(𝑅𝑖 |𝑋0 = 𝑖) = ∞

𝑖 𝑃(𝑅𝑖 = ∞ |𝑋0 = 𝑖) = 1

Transient States 

State  is transient when it is not recurrent, i.e., . Further,  

 1.  is transient if and only if  

 2.  is transient if and only if 

𝑖 ∈ 𝒮 𝑃(𝑅𝑖 = ∞ |𝑋0 = 𝑖) < 1

𝑖 ∈ 𝒮 𝐸(𝑅𝑖 |𝑋0 = 𝑖) < ∞

𝑖 ∈ 𝒮
∞

∑
𝑛=1

𝑝𝑛
𝑖𝑖 < ∞



Periodicity of a Markov Chain 

The period of a state  is the greatest common divisor (denominator) of all integers  for 
which . 

A Markov Chain is aperiodic if it has period ONE.

𝑖 𝑛 > 0
𝑝𝑛

𝑖𝑖 > 0

Example:

Here,  but  and 
so on.  
Therefore, this chain has period THREE

𝑝𝑖𝑖 = 0, 𝑝2
𝑖𝑖 = 0 𝑝3

𝑖𝑖 = 1 > 0


