Tutorial Worksheet-5 (WL6.1)
Eigenvalues, Eigenvectors, Diagonalisation of matrices, LU Decomposition

Name and section: \qquad

Instructor's name: \qquad

1. Find eigenvalues and eigenvectors of the matrix $\left[\begin{array}{ll}5 & -4 \\ 2 & -1\end{array}\right]$. Check whether the given matrix is diagonalizable or not? If it is diagonalizable, then express the given matrix in form $S^{-1} D S$.
2. Check whether the given matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right]$ is diagonalizable or not?
3. Check whether the given matrix $A=\left[\begin{array}{ccc}-1 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 & -1\end{array}\right]$ is diagonalizable or not? If not, then justify your answer and if yes then find the matrix S such that $A=S^{-1} D S$
4. Find the eigen basis and its dimension of the matrix $\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & -1 & -1 \\ 2 & 2 & 0\end{array}\right]$
5. Check whether

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 9
\end{array}\right]
$$

is diagonalizable or not. If it is diagonalizable then using the diagonal matrix find the rank and determinant of A. Also find A^{5}.
6. Find the solution of system of equations

$$
\begin{aligned}
x-3 y+5 z & =1 \\
2 x-4 y+7 z & =1 \\
-x-2 y+z & =1
\end{aligned}
$$

using $L U$ factorization method.

