(Weierstrass Approximation Theorem)

Suppose that f is defined and continuous on [a, b]. For each $\epsilon > 0$, there exists a polynomial P(x), with the property that

 $|f(x) - P(x)| < \epsilon$, for all x in [a, b].

Lagrange Interpolating Polynomials

The problem of determining a polynomial of degree one that passes through the distinct points (x_0, y_0) and (x_1, y_1) is the same as approximating a function f for which $f(x_0) = y_0$ and $f(x_1) = y_1$ by means of a first-degree polynomial **interpolating**, or agreeing with, the

Define the functions

$$L_0(x) = \frac{x - x_1}{x_0 - x_1}$$
 and $L_1(x) = \frac{x - x_0}{x_1 - x_0}$.

The linear **Lagrange interpolating polynomial** through (x_0, y_0) and (x_1, y_1) is

$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1) = \frac{x - x_1}{x_0 - x_1}f(x_0) + \frac{x - x_0}{x_1 - x_0}f(x_1).$$

Note that

$$L_0(x_0)=1, \quad L_0(x_1)=0, \quad L_1(x_0)=0, \quad \text{and} \quad L_1(x_1)=1, \begin{subarray}{c} \mathbf{P}(\mathbf{x}) \text{ satisfies} \\ \text{the relations} \\ \mathbf{f}(\mathbf{x}0)=\mathbf{y}0 \text{ and} \\ \mathbf{f}(\mathbf{x}1)=\mathbf{y}1; \text{ so} \end{subarray}$$

$$P(x_0) = 1 \cdot f(x_0) + 0 \cdot f(x_1) = f(x_0) = y_0$$
 stands in good

and

$$P(x_1) = 0 \cdot f(x_0) + 1 \cdot f(x_1) = f(x_1) = y_1$$
. reasonable approximation for $f(x)$

stead to be a

So P is the unique polynomial of degree at most one that passes through (x_0, y_0) and (x_1, y_1) .

Example

Determine the linear Lagrange interpolating polynomial that passes through the points (2, 4) and (5, 1).

Solution In this case we have

$$L_0(x) = \frac{x-5}{2-5} = -\frac{1}{3}(x-5)$$
 and $L_1(x) = \frac{x-2}{5-2} = \frac{1}{3}(x-2)$,

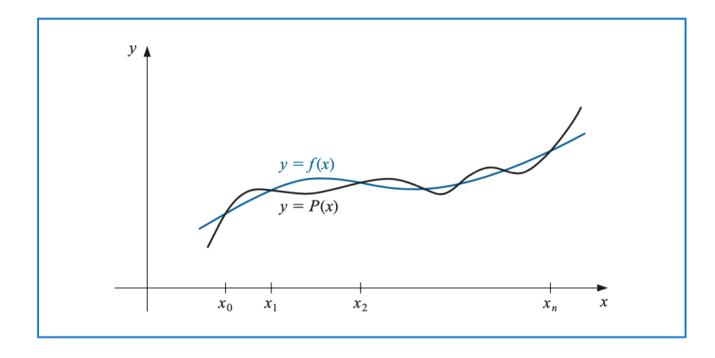
SO

$$P(x) = -\frac{1}{3}(x-5) \cdot 4 + \frac{1}{3}(x-2) \cdot 1 = -\frac{4}{3}x + \frac{20}{3} + \frac{1}{3}x - \frac{2}{3} = -x + 6.$$

Interpolating a function with nth degree Lagrange polynomial Figure

To generalize the concept of linear interpolation, consider the construction of a polynomial of degree at most n that passes through the n+1 points

$$(x_0, f(x_0)), (x_1, f(x_1)), \ldots, (x_n, f(x_n)).$$



In this case we first construct, for each k = 0, 1, ..., n, a function $L_{n,k}(x)$ with the property that $L_{n,k}(x_i) = 0$ when $i \neq k$ and $L_{n,k}(x_k) = 1$. To satisfy $L_{n,k}(x_i) = 0$ for each $i \neq k$ requires that the numerator of $L_{n,k}(x)$ contain the term

$$(x-x_0)(x-x_1)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n).$$

To satisfy $L_{n,k}(x_k) = 1$, the denominator of $L_{n,k}(x)$ must be this same term but evaluated at $x = x_k$. Thus

$$L_{n,k}(x) = \frac{(x-x_0)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n)}{(x_k-x_0)\cdots(x_k-x_{k-1})(x_k-x_{k+1})\cdots(x_k-x_n)}.$$

Theorem

If x_0, x_1, \dots, x_n are n + 1 distinct numbers and f is a function whose values are given at these numbers, then a unique polynomial P(x) of degree at most n exists with

$$f(x_k) = P(x_k)$$
, for each $k = 0, 1, ..., n$.

This polynomial is given by

$$P(x) = f(x_0)L_{n,0}(x) + \dots + f(x_n)L_{n,n}(x) = \sum_{k=0}^{n} f(x_k)L_{n,k}(x),$$
(3.1)

where, for each $k = 0, 1, \ldots, n$,

$$L_{n,k}(x) = \frac{(x - x_0)(x - x_1) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n)}{(x_k - x_0)(x_k - x_1) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n)}$$
(3.2)

$$=\prod_{\substack{i=0\\i\neq k}}^n\frac{(x-x_i)}{(x_k-x_i)}.$$

We will write $L_{n,k}(x)$ simply as $L_k(x)$ when there is no confusion as to its degree.

(a) Use the numbers (called *nodes*) $x_0 = 2$, $x_1 = 2.75$, and $x_2 = 4$ to find the second

Example

- Lagrange interpolating polynomial for f(x) = 1/x.
- (b) Use this polynomial to approximate f(3) = 1/3.

Solution (a) We first determine the coefficient polynomials $L_0(x)$, $L_1(x)$, and $L_2(x)$. In nested form they are

$$L_0(x) = \frac{(x - 2.75)(x - 4)}{(2 - 2.5)(2 - 4)} = \frac{2}{3}(x - 2.75)(x - 4),$$

$$L_1(x) = \frac{(x - 2)(x - 4)}{(2.75 - 2)(2.75 - 4)} = -\frac{16}{15}(x - 2)(x - 4),$$

and

$$L_2(x) = \frac{(x-2)(x-2.75)}{(4-2)(4-2.5)} = \frac{2}{5}(x-2)(x-2.75).$$

Also, $f(x_0) = f(2) = 1/2$, $f(x_1) = f(2.75) = 4/11$, and $f(x_2) = f(4) = 1/4$, so

$$P(x) = \sum_{k=0}^{2} f(x_k) L_k(x)$$

$$= \frac{1}{3} (x - 2.75)(x - 4) - \frac{64}{165} (x - 2)(x - 4) + \frac{1}{10} (x - 2)(x - 2.75)$$

$$= \frac{1}{22} x^2 - \frac{35}{88} x + \frac{49}{44}.$$

(b) An approximation to f(3) = 1/3

$$f(3) \approx P(3) = \frac{9}{22} - \frac{105}{88} + \frac{49}{44} = \frac{29}{88} \approx 0.32955.$$

Figure

