> Tutorial Worksheet-4 (WL5.1, WL5.2)

Orthogonal basis, properties of Orthonormal vectors, orthogonal projection and orthogonal complement, properties of orthogonal complement, advantage of orthogonal transformations, Gram-Schmidt process

Name and section: \qquad

Instructor's name: \qquad

1. Find the orthogonal projection $\vec{x}^{\|}=\operatorname{proj}_{v}(\vec{x})$ of the vector $\vec{x}=(1,2,3)^{T}$, onto vector $\vec{v}=(-1,0,1)^{T}$.
2. Find the orthogonal projection of $\left[\begin{array}{l}9 \\ 0 \\ 0 \\ 0\end{array}\right]$ onto the subspace of \mathbb{R}^{4} spanned by $\left\{\left[\begin{array}{l}2 \\ 2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-2 \\ 2 \\ 0 \\ 1\end{array}\right]\right\}$.
3. Find an orthnormal basis for the space which is spanned by $\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -2\end{array}\right]\right\}$ in \mathbb{R}^{2}.
4. The set $B=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]\right\}$ is a basis of \mathbb{R}^{3}. Use the Gram-Schmidt process to create an orthonormal basis of \mathbb{R}^{3}.
