Tutorial Worksheet-4 (WL5.1, WL5.2)

Orthogonal basis, properties of Orthonormal vectors, orthogonal projection and orthogonal complement, properties of orthogonal complement, advantage of orthogonal transformations, Gram-Schmidt process

Name and section: _____

Instructor's name:

- 1. Find the orthogonal projection $\vec{x}^{\parallel} = proj_v(\vec{x})$ of the vector $\vec{x} = (1, 2, 3)^T$, onto vector $\vec{v} = (-1, 0, 1)^T$.
- 2. Find the orthogonal projection of $\begin{bmatrix} 9\\0\\0\\0 \end{bmatrix}$ onto the subspace of \mathbb{R}^4 spanned by $\left\{ \begin{bmatrix} 2\\2\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} -2\\2\\0\\1\\1 \end{bmatrix} \right\}$.

3. Find an orthnormal basis for the space which is spanned by $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 2\\-2 \end{bmatrix} \right\}$ in \mathbb{R}^2 .

4. The set $B = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\-1 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^3 . Use the Gram-Schmidt process to create an orthonormal basis of \mathbb{R}^3 .