Linear Algebra - Module 2

Engineering Mathematics In Action

Course Designed by Prof. Amrik Sen
Course Conducted by Prof. Amrik Sen and Prof. Sanjay K. Bose
Plaksha University

Matrix Factorizations and Applications

LU Factorization
 ($\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$ where \boldsymbol{A} is an $n \times n$ square matrix)

Consider the following set of equations:
$A x=b$

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}+\cdots a_{1 n} x_{n} \\
& =b_{1} \ldots \ldots \ldots \ldots \text { (i) } \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots a_{2 n} x_{n} \\
& =b_{2} \tag{ii}\\
& = \\
& = \\
& \text {.. } \\
& \text { =. } \\
& a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots a_{n n} x_{n} \\
& =b_{n} \ldots \ldots \ldots \ldots\left(n^{\text {th }} \text { eq. }\right)
\end{align*}
$$

with $\boldsymbol{A}(n \times n), \boldsymbol{x}(n \times 1)$ and $\boldsymbol{b}(n \times 1)$ defined as usual

LU Factorization

 Factorize \boldsymbol{A} in $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ as $\boldsymbol{A}=\mathbf{L U}$Objective: Factorize $\boldsymbol{A}=\boldsymbol{L} \boldsymbol{U}$ where \boldsymbol{L} is a matrix in the lower-triangular form and \boldsymbol{U} is a matrix in the upper-triangular form as given below.

$$
\begin{aligned}
& \text { L } \\
& \boldsymbol{A}=\left(\begin{array}{cccccc}
1 & 0 & 0 & \cdot & \cdot & 0 \\
m_{21} & 1 & 0 & \cdot & \cdot & 0 \\
\cdot & \cdot & \cdot & & & 0 \\
\cdot & \cdot & & \cdot & & \cdot \\
\cdot & \cdot & & & \cdot & \cdot \\
m_{n 1} & m_{n 2} & \cdot & \cdot & m_{n(n-1)} & 1
\end{array}\right)\left(\begin{array}{cccccc}
a_{11}^{(1)} & a_{12}^{(1)} & \cdot & \cdot & \cdot & a_{1 n}^{(1)} \\
0 & a_{22}^{(2)} & \cdot & \cdot & \cdot & a_{2 n}^{(2)} \\
\cdot & 0 & \cdot & \cdot & & \cdot \\
\cdot & \cdot & 0 & \cdot & & \cdot \\
\cdot & \cdot & \cdot & 0 & \cdot & a_{(n-1) n}^{(n-1} \\
0 & \cdot & \cdot & \cdot & 0 & a_{n n}^{(n}
\end{array}\right)
\end{aligned}
$$

It turns out that \boldsymbol{L} is the matrix of the multipliers $\boldsymbol{m}_{\boldsymbol{j} k}$ of the Gauss Elimination method with the main diagonal as $1, \ldots, 1$ and with \boldsymbol{U} as the matrix of the triangular system at the end of the Gauss Elimination. Details of how to do this are described later.

Example of LU Factorization

$$
\underset{\boldsymbol{A}}{\left(\begin{array}{lll}
3 & 5 & 2 \\
0 & 8 & 2 \\
6 & 2 & 8
\end{array}\right)}=\underset{\boldsymbol{L}}{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & -1 & 1
\end{array}\right)\left(\begin{array}{ccc}
3 & 5 & 2 \\
0 & 8 & 2 \\
0 & 0 & 6
\end{array}\right)} \underset{\boldsymbol{U}}{\left(\begin{array}{ll}
2 \\
\end{array}\right)}
$$

Why do LU Factorization?

Since $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ implies $\quad \boldsymbol{L U} \boldsymbol{x}=\boldsymbol{b}$
or $\quad L \boldsymbol{y}=\boldsymbol{b}$ with $\boldsymbol{y}=\boldsymbol{U} \boldsymbol{x}$

Knowing the factors L and \boldsymbol{U}, we can first solve for \boldsymbol{y} in $\boldsymbol{L} \boldsymbol{y}=\boldsymbol{b}$ by forward substitution

We then solve for \boldsymbol{x} in $\boldsymbol{U x}=\boldsymbol{y}$ by backward substitution

Use Backward Substitution to get \boldsymbol{x} starting from Row n

Why do LU Factorization? Solving n equations for n unknowns

- Gauss Elimination typically requires about $2 n^{3} / 3$ operations
- The $\boldsymbol{L U}$ decomposition requires $n^{3} / 3$ operations while solving $\mathbf{L u x}=\boldsymbol{b}$ requires only about n^{2} operations
- Therefore the $\boldsymbol{L} \boldsymbol{U}$ decomposition method generally requires fewer operations than the Gauss Elimination method.
- One more advantage of the $\boldsymbol{L U}$ decomposition method is that, given a fixed \boldsymbol{A}, changing \boldsymbol{b} can give us the different solutions much more efficiently than Gauss Elimination. (Why? ... Because we need to do the LU decomposition only once!)

When can one do $L U$ decomposition for a matrix A ?

For a non-singular matrix, one can always reorder the rows to get a matrix for which one can do $\boldsymbol{L U}$ factorization.

The objective of the reordering is to make the diagonal coefficients non-zero. Once this is done, it would be possible to do the $\boldsymbol{L} \boldsymbol{U}$ factorization.

The $\boldsymbol{L} \boldsymbol{U}$ factorization is unique if we ensure that the diagonal term of the L matrix is all 1 's

How to do LU decomposition

$$
\begin{aligned}
& \text { Reorder rows to } \\
& \text { ensure non-zero } \\
& \text { diagonal terms } \\
& \left(\begin{array}{ccccc}
a_{11} & a_{12} & \ldots & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & \ldots & a_{n n}
\end{array}\right)=\left(\begin{array}{ccccccc}
1 & 0 & 0 & . & . & 0 \\
m_{21} & 1 & 0 & . & . & 0 \\
\cdot & \cdot & . & & & 0 \\
. & . & & . & & . \\
. & \cdot & & & . & . \\
m_{n 1} & m_{n 2} & . & . & m_{n(n-1)} & 1
\end{array}\right)\left(\begin{array}{cccccc}
u_{11} & u_{12} & \ldots & \ldots & u_{1 n} \\
0 & u_{22} & \ldots & \ldots & u_{2 n} \\
0 & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & \ldots & u_{n n}
\end{array}\right) \\
& \\
& \boldsymbol{A}
\end{aligned}
$$

There are several approaches to find \boldsymbol{L} and \boldsymbol{U}

LU Factorization Example Explicitly solve for the $u_{i j} \mathrm{~s}$ and the $m_{i j} \mathrm{~S}$

$$
\left(\begin{array}{lll}
3 & 5 & 2 \\
0 & 8 & 2 \\
6 & 2 & 8
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
8 \\
-7 \\
26
\end{array}\right) \quad A=\left[a_{j k}\right]=\left(\begin{array}{lll}
3 & 5 & 2 \\
0 & 8 & 2 \\
6 & 2 & 8
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
m_{21} & 1 & 0 \\
m_{31} & m_{32} & 1
\end{array}\right)\left(\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right)
$$

Solution: $x_{1}=4, x_{2}=-1 ; x_{3}=\frac{1}{2}$ shown later

$a_{11}=3=u_{11}$	$a_{12}=5=u_{12}$	$a_{13}=2=u_{13}$

$a_{21}=0=m_{21} u_{11}$	$a_{22}=8=m_{21} u_{12}+u_{22}$	$a_{23}=2=m_{21} u_{13}+u_{23}$
$m_{21}=0$	$u_{22}=8$	$u_{23}=2$

0 \& 1 \& 0

2 \& -1 \& 1\end{array}\right)\left($$
\begin{array}{lll}3 & 5 & 2 \\
0 & 8 & 2 \\
0 & 0 & 6\end{array}
$$\right)\)

$$
\begin{aligned}
& a_{31}=6=m_{31} u_{11} \quad a_{32}=2=m_{31} u_{12}+m_{32} u_{22} \quad a_{33}=m_{31} u_{13}+m_{32} u_{23}+u_{33} \\
& =m_{31}(3) \quad=2(5)+m_{32}(8) \quad=2(2)+-1(2)+u_{33} \\
& m_{31}=2 \\
& m_{32}=-1 \\
& u_{33}=6
\end{aligned}
$$

Reorder rows to ensure non-zero diagonal terms

$$
\begin{aligned}
& u_{1 k}=a_{1 k} \\
& m_{j 1}=\frac{a_{j 1}}{u_{11}} \\
& u_{j k}=a_{j k}-\sum_{s=1}^{j-1} m_{j s} u_{s k} \quad k=j, \ldots \ldots, n ; j \geq 2 \\
& m_{j k}=\frac{1}{u_{k k}}\left(a_{j k}-\sum_{s=1}^{k-1} m_{j s} u_{s k}\right) \quad j=k+1, \ldots \ldots, n ; k \geq 2
\end{aligned}
$$

LU Factorization Example Following a Gauss Elimination type strategy (from Prof. Amrik Sen's notes)

LU Factorization Example Following a Gauss Elimination type strategy

$$
\begin{array}{rl}
\left(\begin{array}{lll}
3 & 5 & 2 \\
0 & 8 & 2 \\
6 & 2 & 8
\end{array}\right) \rightarrow\left(\begin{array}{llllll}
1 & 0 & 0 & 3 & 5 & 2 \\
0 & 1 & 0 & 0 & 8 & 2 \\
0 & 0 & 1 & 6 & 2 & 8
\end{array}\right) \rightarrow\left(\begin{array}{llllll}
1 & 0 & 0 & 3 & 5 & 2 \\
0 & 1 & 0 & 0 & 8 & 2 \\
0 & 0 & 1 & 6 & 2 & 8
\end{array}\right) \rightarrow\left(\begin{array}{cccccc}
1 & 0 & 0 & 3 & 5 & 2 \\
0 & 1 & 0 & 0 & 8 & 2 \\
2 & 0 & 1 & 0 & -8 & 4
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccccc}
1 & 0 & 0 & 3 & 5 & 2 \\
0 & 1 & 0 & 0 & 8 & 2 \\
2 & -1 & 1 & 0 & 0 & 6
\end{array}\right) \\
A & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & -1 & 1
\end{array}\right)\left(\begin{array}{lll}
3 & 5 & 2 \\
0 & 8 & 2 \\
0 & 0 & 6
\end{array}\right) \\
L & U
\end{array}
$$

Solving a set of Linear Equations using LU Factorization

$$
\begin{gathered}
A x=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & -1 & 1
\end{array}\right)\left(\begin{array}{lll}
3 & 5 & 2 \\
0 & 8 & 2 \\
0 & 0 & 6
\end{array}\right) x=b=\left(\begin{array}{c}
8 \\
-7 \\
26
\end{array}\right) \\
L \\
U \\
U x=y \Rightarrow\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & -1 & 1
\end{array}\right) y=b=\left(\begin{array}{c}
8 \\
-7 \\
26
\end{array}\right)
\end{gathered} \Rightarrow\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
8 \\
-7 \\
3
\end{array}\right)
$$

Solving a set of Linear Equations using LU Factorization (Prof. Amrik Sen's example)

$$
A x=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
3 & 4 & 1 & 0 \\
-1 & -3 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 1 & 0 & 3 \\
0 & -1 & -1 & -5 \\
0 & 0 & 3 & 13 \\
0 & 0 & 0 & -13
\end{array}\right) x=b=\left(\begin{array}{c}
4 \\
1 \\
-3 \\
4
\end{array}\right) \quad\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
3 & 4 & 1 & 0 \\
-1 & -3 & 0 & 1
\end{array}\right) y=b=\left(\begin{array}{c}
4 \\
1 \\
-3 \\
4
\end{array}\right) \Rightarrow\left(\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)=\left(\begin{array}{c}
4 \\
-7 \\
13 \\
-13
\end{array}\right)
$$

$$
U x=y \Rightarrow\left(\begin{array}{cccc}
1 & 1 & 0 & 3 \\
0 & -1 & -1 & -5 \\
0 & 0 & 3 & 13 \\
0 & 0 & 0 & -13
\end{array}\right) x=\left(\begin{array}{c}
4 \\
-7 \\
13 \\
-13
\end{array}\right) \quad \Rightarrow\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
-1 \\
2 \\
0 \\
1
\end{array}\right)
$$

Orthogonal Basis and Gram-Schmidt Orthogonalization

Two vectors \vec{u}_{1} and \vec{u}_{2} are orthogonal if and only if $\left\langle\vec{u}_{1}, \vec{u}_{2}\right\rangle=0$
The vectors $\vec{u}_{1}, \vec{u}_{2}, \ldots \ldots \ldots . ., \vec{u}_{m} \in R^{n}$ are orthonormal if and only if $\left\langle\vec{u}_{i}, \vec{u}_{j}\right\rangle=\delta_{i j}=1 i=j$
Example: $\vec{e}_{1}, \vec{e}_{2}, \ldots \ldots \ldots . . \vec{e}_{n} \in R^{n}$ are orthonormal $=0 \quad i \neq j$

Properties of orthonormal vectors

1. Orthonormal vectors are (automatically) linearly independent
2. Orthonormal vectors $\vec{u}_{1}, \vec{u}_{2}, \ldots \ldots, \vec{u}_{n} \in R^{n}$ form a basis in R^{n}

Orthogonal projection and orthogonal complement:
Let $\vec{x} \in \mathbb{R}^{n}$ and a subspace V of \mathbb{R}^{n}. Then we can wrtie $\vec{x}=\vec{x}^{\|}+\vec{x}^{\perp}$, where $\vec{x}^{\|} \in V$ and $\vec{x}^{\perp} \in V^{\perp}$. The above representation is unique.

Here $V^{\perp}=\left\{\vec{x} \in \mathbb{R}^{n}:\langle\vec{v}, \vec{x}\rangle=0, \forall \vec{v} \in V\right\}$. The transformation $T(\vec{x})=\operatorname{proj}_{V} \vec{x}=\vec{x} \|$ from \mathbb{R}^{n} to \mathbb{R}^{n} is linear. $V^{\perp}=\operatorname{Ker}(T)$.

How do we compute $\vec{x} \|$?

Consider an orthonormal basis of $V: \vec{u}_{1}, \vec{u}_{2}, \cdots, \vec{u}_{m} \in V$ which is a subspace of \mathbb{R}^{n}. Then

$$
\vec{x} \|=\left\langle\vec{u}_{1}, \vec{x}\right\rangle \vec{u}_{1}+\cdots+\left\langle\vec{u}_{m}, \vec{x}\right\rangle \vec{u}_{m} ; \quad \forall \vec{x} \in \mathbb{R}^{n} .
$$

Consequently, consider an orthonormal basis of $\mathbb{R}^{n}: \vec{u}_{1}, \vec{u}_{2}, \cdots, \vec{u}_{n}$. Then any $\vec{x} \in \mathbb{R}^{n}$,

$$
\vec{x}=\left\langle\vec{u}_{1}, \vec{x}\right\rangle \vec{u}_{1}+\cdots+\left\langle\vec{u}_{n}, \vec{x}\right\rangle \vec{u}_{n} .
$$

$\vec{x}^{\perp} \quad \begin{aligned} & \text { Component of } \boldsymbol{x} \\ & \text { perpendicular to } \boldsymbol{V}\end{aligned}$
$\vec{x}^{\|} \quad$ Projection of \boldsymbol{x} on \boldsymbol{V}

Properties of V^{\perp}, the Orthogonal Complement of V :

Consider a subspace $V \in \mathbb{R}^{n}$. Then, we have the following important results about V^{\perp}, the orthogonal complement of V

1. V^{\perp} is a subspace of \mathbb{R}^{n}.
2. $V \cap V^{\perp}=\{0\}$.
3. $\operatorname{dim}(V)+\operatorname{dim}\left(V^{\perp}\right)=n$.
4. $\left(V^{\perp}\right)^{\perp}=V$.

Coxample: \quad Consider the subspace $V=\operatorname{Im}(A)$ of \mathbb{R}^{4} where $A=\left(\begin{array}{cc}1 & 1 \\ 1 & -1 \\ 1 & -1 \\ 1 & 1\end{array}\right)$. Find $\vec{x}^{\|}$for $\vec{x}=\left(\begin{array}{l}1 \\ 3 \\ 1 \\ 7\end{array}\right)$
Solution: Recall that the column space of A is $\operatorname{Im}(A)$. It can be easily checked that the column vectors of A are orthogonal by taking their scalar product. Thus we can construct an orthonormal basis of $\operatorname{Im}(A)$. The basis vectors \vec{u}_{1}, \vec{u}_{2} are -
$\vec{u}_{1}=\left(\begin{array}{l}1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2\end{array}\right), \vec{u}_{2}=\left(\begin{array}{c}1 / 2 \\ -1 / 2 \\ -1 / 2 \\ 1 / 2\end{array}\right)$ and $\vec{x}^{\|}=\left\langle\vec{u}_{1}, \vec{x}\right\rangle \vec{u}_{1}+\left\langle\vec{u}_{2}, \vec{x}\right\rangle \vec{u}_{2}=6 \vec{u}_{1}+2 \vec{u}_{2}=\left(\begin{array}{l}4 \\ 2 \\ 2 \\ 4\end{array}\right) \quad$ What would be x^{\perp} ?
Verify that $\vec{x}-\vec{x}^{\|} \perp \vec{u}_{1}, \vec{u}_{2} \quad$ perpendicular to both \vec{u}_{1} and \vec{u}_{2}

Why are orthonormal basis vectors useful?

1. We know that if we have some basis $\vec{v}_{1}, \vec{v}_{2}, \ldots \ldots, \vec{v}_{n}$ of an n-dimensional vector space W, then any vector $\vec{x} \in W$ can be written as $\vec{x}=\alpha_{1} \vec{v}_{1}+\alpha_{2} \vec{v}_{2}+\ldots \ldots+\alpha_{n} \vec{v}_{n}$ (i.e. as a linear combination of the basis vectors). However, there is no firstprinciples or convenient way of finding the unique coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ except by explicit guesswork calculations. On the contrary, if we do have an orthonormal basis set $\vec{u}_{1}, \vec{u}_{2}, \ldots \ldots \ldots . \vec{u}_{n}$ then any vector can be written as a linear combination of this orthonormal basis set as

$$
\vec{x}=\beta_{1} \vec{u}_{1}+\beta_{2} \vec{u}_{2}+\ldots \ldots \ldots+\beta_{n} \vec{u}_{n}
$$

where the coefficients $\beta_{i}=\left\langle\vec{u}_{i}, \vec{x}\right\rangle, \forall i=1,2, \ldots \ldots, n$ are uniquely determined.
2. Orthogonality guarantees linear independence.

Orthogonal Transformation: A linear transformation $\boldsymbol{T}: \boldsymbol{V} \boldsymbol{V}$ in \mathbb{R}^{n} that preserves the inner product. For each pair $\boldsymbol{u}, \mathbf{v}$ of elements of \boldsymbol{V}, we will then have -

$$
\langle u, v\rangle=\langle T u, T v\rangle
$$

Why are orthogonal transformations useful?

1. Orthogonal transformations are metric preserving transformations, i.e. if $\boldsymbol{T}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is orthogonal, then $\quad\left|\mid \boldsymbol{T}(\vec{x})\|=\| \vec{x} \|, \forall \vec{x} \in \mathbb{R}^{n}\right.$.
(length preserving transformation)
(Note that if $T(\vec{x})=A \vec{x}$ is an orthogonal transformation, then we say that A is an orthogonal matrix. For such an A, we have that $A^{\top} A=/$ or $\left.A^{-1}=A^{\top}\right)$
2. Orthogonal transformations are angle preserving transformations for orthogonal vectors.
For example, if $\vec{u} \perp \vec{w}$, then $T(\vec{u}) \perp T(\vec{w})$
