Eigenvalues & Eigenvectors

2.1 Agenda Items

- Eigenvalues (evs) and Eigenvectors (EVs) of a matrix.
- Meaning of evs and EVs.
- Diagonalizable matrices and similar transformations.
- Analytical (pen-paper) method of finding evs.
- computational method of finding evs of a matrix(power method, etc).

Definition 8 (evs and EVs). Let $A \in \mathbf{M}_{n \times n}(\mathbb{F})$, where $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$. A nonzero vector $x \in \mathbb{F}^n$ is an EV of A if $Ax = \lambda x$ for some $\lambda \in \mathbb{F}$. λ is said to be an ev A corresponding to the EV x.

2.2 Meaning of the equation $AX = \lambda x$

2.2.1 Algebraic meaning

 $\begin{aligned} Ax &= \lambda x \ can \ also \ be \ written \ as \ (A - \lambda I) x = 0, \ i.e., \ \ker(A - \lambda I) = EVs \sqcup \{0\}. \ In \ the \\ above \ equation \ we \ use \ that \ \lambda \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}. \ The \ subspace \ \ker(A - \lambda I) \\ has \ a \ special \ name, \ EIGENSPACE \ of \ \lambda \ w.r.t. \ A. \end{aligned}$

Consider an example: $A = \begin{pmatrix} 2 & -1 \\ 2 & 4 \end{pmatrix}$ so that $A - \lambda I = \begin{pmatrix} 2 - \lambda & -1 \\ 2 & 4 - \lambda \end{pmatrix}$. Now solving $Ax = \lambda x$ is equivalent to solving the system of linear equations $\begin{pmatrix} 2 - \lambda & -1 \\ 2 & 4 - \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. This implies that

$$(2 - \lambda)x_1 - x_2 = 0$$
$$2x_1 + (4 - \lambda)x_2 = 0$$

Since EV cannot be 0, finding Evs of A boils down to the following question:

When does this system of linear equations have a nontrivial solution?

To answer the above question we need to know various features of an invertible matrices:

Let $B \in \mathbf{M}_{n \times n}(\mathbb{F})$, where $F = \mathbb{R}$ or \mathbb{C} . TFAE

- *B* is invertible.
- Bx = b has a unique solution in \mathbb{F}^n for all $b \in \mathbb{F}^n$.
- $\operatorname{rref}(B) = I_n$.
- $\operatorname{rank}(B) = n$.
- $\operatorname{im}(B) = \mathbb{F}^n$.
- $\ker(B) = \{0\}.$

Let us try to answer the above question now. In view of the above equivalence

$$\ker(A - \lambda I) \neq \{0\} \iff (A - \lambda I) \text{ is not invertible}$$
$$\iff \det(A - \lambda I) = 0.$$

In our problem

$$\det(A - \lambda I) = \det \begin{pmatrix} 2 - \lambda & -1 \\ 2 & 4 - \lambda \end{pmatrix} = (2 - \lambda)(4 - \lambda) + 2 = \lambda^2 - 6\lambda + 10$$

The above polynomial in λ is called the *characteristic polynomial for the matrix* A. Thus

$$\det(A - \lambda I) = 0 \iff \lambda = 3 \pm i$$

Let us call $\lambda_1 = 3 + i$ and $\lambda_2 = 3 - i$.

To find EV w.r.t. λ_1 solve $Ax = \lambda_1 x$. After solving we obtain $(1+i)x_1 + x_2 = 0$, i.e., $x_2 = -(1+i)x_1$. We can take x_1 to be any nonzero scalar of \mathbb{F} , say k, so as to write $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} k \\ -(1+i)k \end{pmatrix} = k \begin{pmatrix} 1 \\ -1-i \end{pmatrix}$. Hence any nonzero multiple of the vector $\begin{pmatrix} 1 \\ -1-i \end{pmatrix}$ is an EV of the matrix A w.r.t the ev λ_1 . Similarly one can find EV corresponding to the ev λ_2 .

2.3 A Slight Digression

Let $B \in \mathbf{M}_{n \times n}(\mathbb{F})$, where $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$.

Question: Why $null(B) = \{0\} \iff B$ is invertible ?

Answer: For finite dimensional vector spaces U, V over \mathbb{F} , a linear transformation $T: U \to V$ is invertible if and only if T is one to one and onto. Rank Nullity Theorem:

$$nullity(T) + \operatorname{rank}(T) = \dim(U).$$

Since T is one to one ker $(T) = \{0\}$, i.e., nullity(T) = 0. Also since T is onto, rank $(T) = \dim(V)$. Therefore by Rank nullity theorem we obtain

T is an isomorphism $\implies \dim(U) = \dim(V).$

2.4 HW/Exercise problem

Q. Consider
$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 0 \end{pmatrix}$$

1. Find the characteristic polynomial for A.

- 2. Find the evs of A.
- 3. Find the EVs of A

Ans:

evs:
$$-1, 2, 3.$$

EVs: $\begin{pmatrix} 1\\1\\2 \end{pmatrix}, \begin{pmatrix} 1\\1\\-1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\0 \end{pmatrix}.$

Geometrical meaning of $Ax = \lambda x$, when λ is real. Ax is parallel to x, i.e., the "EV" x either gets stretched longitudinally when acted upon by the matrix A.

2.5 Coming Soon!

- Diagonalizable matrix
- Similarity transformation
- Application of evs and EVs in solution to ODE