Eigenvalues \& Eigenvectors

2.1 Agenda Items

- Eigenvalues (evs) and Eigenvectors (EVs) of a matrix.
- Meaning of evs and EVs.
- Diagonalizable matrices and similar transformations.
- Analytical (pen-paper) method of finding evs.
- computational method of finding evs of a matrix(power method, etc).

Definition 8 (evs and EVs). Let $A \in \mathbf{M}_{n \times n}(\mathbb{F})$, where $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$. A nonzero vector $x \in \mathbb{F}^{n}$ is an EV of A if $A x=\lambda x$ for some $\lambda \in \mathbb{F}$. λ is said to be an ev A corresponding to the EV x.

2.2 Meaning of the equation $A X=\lambda x$

2.2.1 Algebraic meaning

$A x=\lambda x$ can also be written as $(A-\lambda I) x=0$, i.e., $\operatorname{ker}(A-\lambda I)=E V s \sqcup\{0\}$. In the above equation we use that $\lambda\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{lll}\lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$. The subspace $\operatorname{ker}(A-\lambda I)$ has a special name, EIGENSPACE of λ w.r.t. A.

Consider an example: $A=\left(\begin{array}{cc}2 & -1 \\ 2 & 4\end{array}\right)$ so that $A-\lambda I=\left(\begin{array}{cc}2-\lambda & -1 \\ 2 & 4-\lambda\end{array}\right)$. Now solving $A x=\lambda x$ is equivalent to solving the system of linear equations $\left(\begin{array}{cc}2-\lambda & -1 \\ 2 & 4-\lambda\end{array}\right)\binom{x_{1}}{x_{2}}=$ $\binom{0}{0}$. This implies that

$$
\begin{array}{r}
(2-\lambda) x_{1}-x_{2}=0 \\
2 x_{1}+(4-\lambda) x_{2}=0
\end{array}
$$

Since EV cannot be 0 , finding Evs of A boils down to the following question:
When does this system of linear equations have a nontrivial solution?
To answer the above question we need to know various features of an invertible matrices:

Let $B \in \mathbf{M}_{n \times n}(\mathbb{F})$, where $F=\mathbb{R}$ or \mathbb{C}. TFAE

- B is invertible.
- $B x=b$ has a unique solution in \mathbb{F}^{n} for all $b \in \mathbb{F}^{n}$.
- $\operatorname{rref}(B)=I_{n}$.
- $\operatorname{rank}(B)=n$.
- $\operatorname{im}(B)=\mathbb{F}^{n}$.
- $\operatorname{ker}(B)=\{0\}$.

Let us try to answer the above question now. In view of the above equivalence

$$
\begin{aligned}
\operatorname{ker}(A-\lambda I) \neq\{0\} & \Longleftrightarrow(A-\lambda I) \text { is not invertible } \\
& \Longleftrightarrow \operatorname{det}(A-\lambda I)=0 .
\end{aligned}
$$

In our problem

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
2-\lambda & -1 \\
2 & 4-\lambda
\end{array}\right)=(2-\lambda)(4-\lambda)+2=\lambda^{2}-6 \lambda+10
$$

The above polynomial in λ is called the characteristic polynomial for the matrix A. Thus

$$
\operatorname{det}(A-\lambda I)=0 \Longleftrightarrow \lambda=3 \pm i
$$

Let us call $\lambda_{1}=3+i$ and $\lambda_{2}=3-i$.
To find $E V$ w.r.t. λ_{1} solve $A x=\lambda_{1} x$. After solving we obtain $(1+i) x_{1}+x_{2}=0$, i.e., $x_{2}=-(1+i) x_{1}$. We can take x_{1} to be any nonzero scalar of \mathbb{F}, say k, so as to write $\binom{x_{1}}{x_{2}}=\binom{k}{-(1+i) k}=k\binom{1}{-1-i}$. Hence any nonzero multiple of the vector $\binom{1}{-1-i}$ is an $E V$ of the matrix A w.r.t the ev λ_{1}. Similarly one can find EV corresponding to the ev λ_{2}.

2.3 A Slight Digression

Let $B \in \mathbf{M}_{n \times n}(\mathbb{F})$, where $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$.
Question: Why null $(B)=\{0\} \Longleftrightarrow B$ is invertible?
Answer: For finite dimensional vector spaces U, V over \mathbb{F}, a linear transformation $T: U \rightarrow V$ is invertible if and only if T is one to one and onto.
Rank Nullity Theorem:

$$
\operatorname{nullity}(T)+\operatorname{rank}(T)=\operatorname{dim}(U) .
$$

Since T is one to one $\operatorname{ker}(T)=\{0\}$, i.e., nullity $(T)=0$. Also since T is onto, $\operatorname{rank}(T)=\operatorname{dim}(V)$. Therefore by Rank nullity theorem we obtain

$$
T \text { is an isomorphism } \Longrightarrow \operatorname{dim}(U)=\operatorname{dim}(V) .
$$

2.4 HW/Exercise problem

Q. Consider $A=\left(\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 0\end{array}\right)$

1. Find the characteristic polynomial for A.
2. Find the evs of A.
3. Find the EVs of A

Ans:

$$
\text { evs: }-1,2,3 .
$$

$$
E V s:\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right),\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
$$

Geometrical meaning of $A x=\lambda x$, when λ is real. $A x$ is parallel to x, i.e., the " $E V$ " x either gets stretched longitudinally when acted upon by the matrix A.

2.5 Coming Soon!

- Diagonalizable matrix
- Similarity transformation
- Application of evs and EVs in solution to ODE

