
Solving Systems of Linear ODEs with Complex Eigenvalues

We present here the theory for a 2 × 2 system. (This can be generalized 
to a 𝑛 × 𝑛 system)

𝑋′ = 𝐴2×2𝑋

where     the eigenvalues are     𝜆1,2= 𝛼 ± 𝑖𝛽

and          the eigenvectors are   Ԧ𝑣1, Ԧ𝑣2 = Ԧ𝑝 ± 𝑖 Ԧ𝑞

Note that complex eigenvalues and eigenvectors always appear in pairs



We can then  write the full solution as,

Ԧ𝑥 𝑡 = 𝑘1𝑒
𝜆1𝑡 Ԧ𝑣1 + 𝑘2𝑒

𝜆2𝑡 Ԧ𝑣2

However, since the 𝜆 𝑠 and the Ԧ𝑣 𝑠 are complex, we need to break up the 
solution space into real and imaginary parts to study the trajectories on the 
phase plane

To do this, we rewrite Ԧ𝑥 𝑡 as –

Ԧ𝑥 𝑡 = Ԧ𝑥𝑟𝑒 𝑡 + 𝑖 Ԧ𝑥𝑖𝑚 𝑡



To see how this can be done, substitute 𝜆1, 𝜆2, Ԧ𝑣1, Ԧ𝑣2 in Ԧ𝑥 𝑡 = 𝑘1𝑒
𝜆1𝑡 Ԧ𝑣1 + 𝑘2𝑒

𝜆2𝑡 Ԧ𝑣2

Then, 
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𝑒𝑖𝛽𝑡 = 𝐶𝑜𝑠𝛽𝑡 + 𝑖𝑆𝑖𝑛𝛽𝑡

𝑒−𝑖𝛽𝑡 = 𝐶𝑜𝑠𝛽𝑡 − 𝑖𝑆𝑖𝑛𝛽𝑡
𝑐1 = 𝑘1 + 𝑘2
𝑐2 = 𝑘1 − 𝑘2
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Therefore, 1 2( ) ( ) ( )re imx t c x t c x t= +
Note that 𝑐2𝑖 is rewritten as the new 
constant 𝑐2.

We can do that as 𝑖 = −1 is also a 
constant



Question: Are  Ԧ𝑥𝑟𝑒(𝑡) and  Ԧ𝑥𝑖𝑚(𝑡) linearly independent solutions of  𝑋′= 𝐴𝑋 ?

To check this, we substitute   Ԧ𝑥 𝑡 = Ԧ𝑥𝑟𝑒 𝑡 + 𝑖 Ԧ𝑥𝑖𝑚 𝑡 in 𝑋′= 𝐴𝑋

This gives, Ԧ𝑥′ 𝑡 = Ԧ𝑥𝑟𝑒′ 𝑡 + 𝑖 Ԧ𝑥𝑖𝑚′ 𝑡 = 𝐴 Ԧ𝑥𝑟𝑒 𝑡 + 𝑖𝐴 Ԧ𝑥𝑖𝑚 𝑡

Equating the real and the imaginary parts above, we get that both Ԧ𝑥𝑟𝑒 𝑡 and 
Ԧ𝑥𝑖𝑚(𝑡) satisfy the ODE, i.e. Ԧ𝑥𝑟𝑒′ 𝑡 = 𝐴 Ԧ𝑥𝑟𝑒 𝑡 and Ԧ𝑥𝑖𝑚′ 𝑡 = 𝐴 Ԧ𝑥𝑖𝑚 𝑡

Since 𝑋′= 𝐴𝑋 is a 2 × 2 system, the two solutions Ԧ𝑥𝑟𝑒 𝑡 and Ԧ𝑥𝑖𝑚 𝑡 suffice 
and can be studied together on the phase-plane! 



Example:  Solve Ԧ𝑋′ = 𝐴 Ԧ𝑋 for 𝐴 =
6 −1
5 4

Eigenvalues of 𝐴: 𝜆1,2 = 5 ± 2𝑖

Eigenvectors are:     Ԧ𝑣1,2 =
1
1

± 𝑖
0

−2

The corresponding general solution is

Ԧ𝑥 𝑡 = 𝑐1 Ԧ𝑥𝑟𝑒 𝑡 + 𝑐2 Ԧ𝑥𝑖𝑚 𝑡

= 𝑒5𝑡
𝑐1

𝐶𝑜𝑠2𝑡
𝐶𝑜𝑠2𝑡 + 2𝑆𝑖𝑛2𝑡

+𝑐2
𝑆𝑖𝑛2𝑡

𝑆𝑖𝑛2𝑡 − 2𝐶𝑜𝑠2𝑡

where 𝑐1 and 𝑐2 are real constants

Phase-plane Trajectory for 𝜆1,2 = 5 ± 2𝑖
(Note the unstable equilibrium at the origin) 

𝒚

𝒙

Use                                 for Phase-Plane Trajectory𝑥′ = 6𝑥 − 𝑦
𝑦′ = 5𝑥 + 4𝑦



𝑋′ = 𝐴𝑋 for 𝐴 =
6 −1
5 4

𝑥′ = 6𝑥 − 𝑦
𝑦′ = 5𝑥 + 4𝑦

For 𝑣 − 𝑛𝑢𝑙𝑙𝑐𝑙𝑖𝑛𝑒, 
𝑥′ = 0 ⇒ 𝑦 = 6𝑥 all arrows vertical

all arrows 
horizontal

For ℎ − 𝑛𝑢𝑙𝑙𝑐𝑙𝑖𝑛𝑒, 

𝑦′ = 0 ⇒ 𝑦 = −
5

4
𝑥



Example: Solve Ԧ𝑋′ = 𝐴 Ԧ𝑋 =
4 −5
5 −4

Ԧ𝑋

Eigenvalues:  𝐴 − 𝜆𝐼 = 0 ⇒ 𝜆2 + 9 = 0 ⇒ 𝜆1,2 = ±3𝑖

Eigenvectors: Ԧ𝑣1,2 =
5

4 ∓ 3𝑖
=
5
4

± 𝑖
0

−3
=𝑝 + 𝑖𝑞 where 𝑝 =

5
4

𝑞 =
0

−3

Therefore,       Ԧ𝑥𝑟𝑒 𝑡 = cos 3𝑡
5
4

− sin 3𝑡
0

−3

Ԧ𝑥𝑖𝑚 𝑡 = sin 3𝑡
5
4

+ cos 3𝑡
0

−3

General Solution:   Ԧ𝑥 = 𝑐1 Ԧ𝑥𝑟𝑒 𝑡 + 𝑐2 Ԧ𝑥𝑖𝑚 𝑡

= 𝑐1
5cos 3𝑡

4 cos 3𝑡 + 3 sin 3𝑡
+ 𝑐2

5sin 3𝑡
4 sin 3𝑡 − 3 cos 3𝑡



Phase Portrait

𝒙

𝒚 * Note that the trajectories 
are really “Periodic Orbits” 
around the origin., i.e. a 
solution returns to the 
original point.

* The stable equilibrium at 
the origin neither attracts 
nor repels

* We see this kind of 
behavior when the roots 
are purely imaginary.



Linear Independence of Functions over an interval 𝑰

Suppose 𝑓1 𝑡 , 𝑓2 𝑡 , …… . . 𝑓𝑛 𝑡 are functions of 𝑡 on some interval 𝐼, such that they can be differentiated 
𝑛 times on 𝐼.
We can then set up the following 𝑛 equations in 𝑛 unknowns using 𝑛 unknown constants 𝑐1, 𝑐2, …… , 𝑐𝑛 by 
successive differentiation for every 𝑡 in 𝐼.
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We know that if the determinant of the matrix
coefficients of the 𝑐𝑖’𝑠 is not 0, then the only
solution is the trivial one 𝑐1 = 𝑐2 = ⋯… = 𝑐𝑛 = 0
and the functions 𝑓1 𝑡 , 𝑓2 𝑡 , …… . . 𝑓𝑛 𝑡 are
independent over the interval 𝐼.
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Wronskian of Functions 

𝑓1 𝑡 , 𝑓2 𝑡 , …… . . 𝑓𝑛 𝑡

on 𝑰



The Wronskian and Linear Independence Theorem

If 𝑊 𝑓1, 𝑓2, … . 𝑓𝑛 (𝑡)≠ 0 for all 𝑡 on the interval 𝐼, where 𝑓1, 𝑓2, … . 𝑓𝑛 are defined 
then {𝑓1, 𝑓2, … . 𝑓𝑛} is a set of linearly independent functions.

Note that if {𝑓1, 𝑓2, … . 𝑓𝑛} is linearly dependent on 𝐼 , then 𝑊 𝑓1, 𝑓2, … . 𝑓𝑛 (𝑡)≡ 0
on 𝐼 . So to show independence, we only need to find  one 𝑡0 ∈ 𝐼 such that 
𝑊 𝑓1, 𝑓2, … . 𝑓𝑛 (𝑡0)≠ 0
⇒ linear independence at one point in 𝐼 implies independence over 𝐼

Example    𝑡2 + 1, 𝑡2 − 1, 2𝑡 + 5
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𝑡2 + 1, 𝑡2 − 1, 2𝑡 +
5 is linearly independent over 
𝑡 in (−∞,∞)



Important: The Converse Is Not True! 

Suppose that the Wronskian 𝑊 𝑓1, 𝑓2, … . 𝑓𝑛 (𝑡) = 0 over an entire interval 𝐼, where 𝑓1, 𝑓2, … . 𝑓𝑛
are defined on 𝐼. Does this imply that {𝑓1, 𝑓2, … . 𝑓𝑛}  is linearly dependent on 𝐼? NO
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However, it is directly evident that 𝑓1can never be a scalar multiple of 𝑓2, so they 
are linearly independent and are not linearly dependent!



Using the Wronskian to Establish Linear Independence for the Solutions 
of a Linear ODE

If Ԧ𝑥1, … . . Ԧ𝑥𝑛 solve a homogenous linear ODE system and if there exists any 𝑡 for 
which the Wronskian 𝑊 Ԧ𝑥1, … . . Ԧ𝑥𝑛; 𝑡 ≠ 0 then Ԧ𝑥1, … . . Ԧ𝑥𝑛 are linearly 
independent solutions.

Here the Wronskian 𝑊 Ԧ𝑥1, … . . Ԧ𝑥𝑛; 𝑡 is defined as -
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Solutions
We have three of them 

but
are they independent?
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⇒ Ԧ𝑥1(𝑡), Ԧ𝑥2(𝑡), Ԧ𝑥3(𝑡) are linearly independent for any 𝑡 ∈ (−∞,∞)



Therefore, the solution to 
this homogenous ODE is 
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It would be interesting to solve this system using another approach!  See the next slide!
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Manipulate these algebraically 
to show that
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Similarly, the first two 
equations can be 
manipulated to get 

Now differentiate 
𝑦(𝑡) to get 𝑥(𝑡) 2

2 3Solution: 

( ) ( )

  ( ) 2t t

x t y t

x t c e c e

=

= +

Missing Term

Manipulate these algebraically 
to show that



Consider the solution     𝑧 𝑡 = 𝑘1𝑒
3𝑡 + 𝑘2𝑒

−2𝑡+ 𝑘3𝑒
2𝑡 of       𝑧′′′ − 3𝑧′′ − 4𝑧′ + 12𝑧 = 0

Substituting this in   𝑧′ = −𝑥 + 𝑦 + 3𝑧 we get   5𝑘2𝑒
−2𝑡 + 𝑘3𝑒

2𝑡 = −𝑥 + 𝑦

Note that, we also got      𝑥 𝑡 = 𝑐2𝑒
𝑡 + 2𝑐3𝑒

2𝑡, 𝑦 𝑡 = 𝑐2𝑒
𝑡 + 𝑐3𝑒

2𝑡 (see previous slide)

⇒ −𝑥 + 𝑦 = −𝑐3𝑒
2𝑡

Therefore,                               5𝑘2𝑒
−2𝑡 + 𝑘3𝑒

2𝑡 = −𝑐3𝑒
2𝑡

⇒ 𝑘1 can be arbitrarily chosen (i.e. 𝑘1= 𝑐1 as earlier), but 𝑘2 and 𝑘3must satisfy the above equation

Comparing the coefficients of 𝒆−𝟐𝒕 and 𝒆𝟐𝒕 in the LHS and RHS of the above, we get   𝑘2 = 0, 𝑘3 = −𝑐3

Therefore, 𝑧 𝑡 = 𝑐1𝑒
3𝑡 ++ 𝑐3𝑒

2𝑡

Same solution as before!

So, “All Roads Do Indeed 
Lead to Rome”


