Solving Systems of Linear ODEs with Complex Eigenvalues

We present here the theory for a 2×2 system. (This can be generalized to a $n \times n$ system)

$$
\vec{X}^{\prime}=A_{2 \times 2} \vec{X}
$$

where the eigenvalues are $\lambda_{1,2}=\alpha \pm i \beta$
and the eigenvectors are $\vec{v}_{1}, \vec{v}_{2}=\vec{p} \pm i \vec{q}$

Note that complex eigenvalues and eigenvectors always appear in pairs

We can then write the full solution as,

$$
\vec{x}(t)=k_{1} e^{\lambda_{1} t} \vec{v}_{1}+k_{2} e^{\lambda_{2} t} \vec{v}_{2}
$$

However, since the λs and the $\vec{v} s$ are complex, we need to break up the solution space into real and imaginary parts to study the trajectories on the phase plane

To do this, we rewrite $\vec{x}(t)$ as -

$$
\vec{x}(t)=\vec{x}_{r e}(t)+i \vec{x}_{i m}(t)
$$

To see how this can be done, substitute $\lambda_{1}, \lambda_{2}, \vec{v}_{1}, \vec{v}_{2}$ in $\vec{x}(t)=k_{1} e^{\lambda_{1} t} \vec{v}_{1}+k_{2} e^{\lambda_{2} t} \vec{v}_{2}$
Then,

$$
\begin{aligned}
\vec{x}(t) & =k_{1} e^{(\alpha+i \beta) t}(\vec{p}+i \vec{q})+k_{2} e^{(\alpha-i \beta) t}(\vec{p}-i \vec{q}) \\
& =k_{1} e^{\alpha t} e^{i \beta t}(\vec{p}+i \vec{q})+k_{2} e^{\alpha t} e^{-i \beta t}(\vec{p}-i \vec{q}) \\
& =c_{1} e^{\alpha t}(\vec{p} \operatorname{Cos} \beta t-\vec{q} \operatorname{Sin} \beta t)+c_{2} e^{\alpha t}(\underbrace{}_{\vec{x}_{i m}(t)}(t) \operatorname{Sin} \beta t+\vec{q} \operatorname{Cos} \beta t)
\end{aligned}
$$

$$
\begin{gathered}
e^{i \beta t}=\operatorname{Cos} \beta t+i \operatorname{Sin} \beta t \\
e^{-i \beta t}=\operatorname{Cos} \beta t-i \operatorname{Sin} \beta t \\
c_{1}=k_{1}+k_{2} \\
c_{2}=k_{1}-k_{2}
\end{gathered}
$$

Therefore, $\quad \vec{x}(t)=c_{1} \vec{x}_{r e}(t)+c_{2} \vec{x}_{i m}(t)$

> Note that $c_{2} i$ is rewritten as the new constant c_{2}.
> We can do that as $i=\sqrt{-1}$ is also a constant

Question: Are $\vec{x}_{r e}(t)$ and $\vec{x}_{i m}(t)$ linearly independent solutions of $\vec{X}^{\prime}=A \vec{X}$?

To check this, we substitute $\vec{x}(t)=\vec{x}_{r e}(t)+i \vec{x}_{i m}(t)$ in $\vec{X}^{\prime}=A \vec{X}$
This gives, $\vec{x}^{\prime}(t)=\vec{x}_{r e}{ }^{\prime}(t)+i \vec{x}_{i m}{ }^{\prime}(t)=A \vec{x}_{r e}(t)+i A \vec{x}_{i m}(t)$

Equating the real and the imaginary parts above, we get that both $\vec{x}_{r e}(t)$ and $\vec{x}_{i m}(t)$ satisfy the ODE, i.e. $\vec{x}_{r e}{ }^{\prime}(t)=A \vec{x}_{r e}(t)$ and $\vec{x}_{i m}{ }^{\prime}(t)=A \vec{x}_{i m}(t)$

Since $\vec{X}^{\prime}=A \vec{X}$ is a 2×2 system, the two solutions $\vec{x}_{r e}(t)$ and $\vec{x}_{i m}(t)$ suffice and can be studied together on the phase-plane!

Example: Solve $\vec{X}^{\prime}=A \vec{X}$ for $A=\left(\begin{array}{rr}6 & -1 \\ 5 & 4\end{array}\right)$
Eigenvalues of $A: \quad \lambda_{1,2}=5 \pm 2 i$
Eigenvectors are: $\quad \vec{v}_{1,2}=\binom{1}{1} \pm i\binom{0}{-2}$

The corresponding general solution is

$$
\begin{aligned}
\vec{x}(t) & =c_{1} \vec{x}_{r e}(t)+c_{2} \vec{x}_{i m}(t) \\
& =e^{5 t}\left\{\begin{array}{c}
c_{1}\binom{\operatorname{Cos} 2 t}{\operatorname{Cos} 2 t+2 \operatorname{Sin} 2 t} \\
+c_{2}\binom{\operatorname{Sin} 2 t}{\operatorname{Sin} 2 t-2 \operatorname{Cos} 2 t}
\end{array}\right\}
\end{aligned}
$$

where c_{1} and c_{2} are real constants

Use $\quad \begin{aligned} & x^{\prime}=6 x-y \text { for Phase-Plane Trajectory } \\ & y^{\prime}=5 x+4 y\end{aligned}$

Phase-plane Trajectory for $\lambda_{1,2}=5 \pm 2 i$ (Note the unstable equilibrium at the origin)

$$
\vec{X}^{\prime}=A \vec{X} \text { for } A=\left(\begin{array}{rr}
6 & -1 \\
5 & 4
\end{array}\right) \quad \begin{aligned}
& x^{\prime}=6 x-y \\
& y^{\prime}=5 x+4 y
\end{aligned}
$$

For v-nullcline,

$$
x^{\prime}=0 \Rightarrow y=6 x
$$

For h - nullcline,

$$
y^{\prime}=0 \Rightarrow y=-\frac{5}{4} x
$$

Example: Solve $\vec{X}^{\prime}=A \vec{X}=\left(\begin{array}{ll}4 & -5 \\ 5 & -4\end{array}\right) \vec{X}$
Eigenvalues: $|A-\lambda I|=0 \quad \Rightarrow \quad \lambda^{2}+9=0 \quad \Rightarrow \quad \lambda_{1,2}= \pm 3 i$
Eigenvectors: $\vec{v}_{1,2}=\binom{5}{4 \mp 3 i}=\binom{5}{4} \pm i\binom{0}{-3}=p+i q \quad$ where $p=\binom{5}{4} \quad q=\binom{0}{-3}$
Therefore, $\quad \vec{x}_{r e}(t)=\cos 3 t\binom{5}{4}-\sin 3 t\binom{0}{-3}$

$$
\vec{x}_{i m}(t)=\sin 3 t\binom{5}{4}+\cos 3 t\binom{0}{-3}
$$

General Solution: $\vec{x}=c_{1} \vec{x}_{r e}(t)+c_{2} \vec{x}_{i m}(t)$

$$
=c_{1}\binom{5 \cos 3 t}{4 \cos 3 t+3 \sin 3 t}+c_{2}\binom{5 \sin 3 t}{4 \sin 3 t-3 \cos 3 t}
$$

Phase Portrait

* Note that the trajectories are really "Periodic Orbits" around the origin., i.e. a solution returns to the original point.
* The stable equilibrium at the origin neither attracts nor repels
* We see this kind of behavior when the roots are purely imaginary.

Linear Independence of Functions over an interval I

Suppose $f_{1}(t), f_{2}(t), \ldots \ldots . f_{n}(t)$ are functions of t on some interval I, such that they can be differentiated n times on I.
We can then set up the following n equations in n unknowns using n unknown constants $c_{1}, c_{2}, \ldots \ldots, c_{n}$ by successive differentiation for every t in I.

$$
\begin{aligned}
& c_{1} f_{1}(t)+c_{2} f_{2}(t)+\ldots \ldots \ldots \ldots .+c_{n} f_{n}(t)=0 \\
& c_{1} f_{1}^{\prime}(t)+c_{2} f_{2}^{\prime}(t)+\ldots \ldots \ldots \ldots+c_{n} f_{n}^{\prime}(t)=0 \\
& \ldots \ldots . \\
& c_{1} f_{1}^{(n-1)}(t)+c_{2} f_{2}^{(n-1)}(t)+\ldots \ldots \ldots .+c_{n} f_{n}^{(n-1)}(t)=0
\end{aligned}
$$

We know that if the determinant of the matrix coefficients of the c_{i} 's is not 0 , then the only solution is the trivial one $c_{1}=c_{2}=\cdots \ldots=c_{n}=0$ and the functions $f_{1}(t), f_{2}(t), \ldots \ldots . f_{n}(t)$ are independent over the interval I.

$$
W\left[f_{1}, f_{2}, \ldots, f_{n}\right](t) \equiv\left|\begin{array}{cccc}
f_{1}(t) & f_{2}(t) & \ldots \ldots \ldots & f_{4}(t) \\
f_{1}^{\prime}(t) & f_{2}^{\prime}(t) & \ldots \ldots \ldots & f_{2}^{\prime}(t) \\
\ldots \ldots \ldots & \ldots \ldots . . & \ldots \ldots . . & \ldots \ldots . . \\
f_{1}^{(n-1)}(t) & f_{2}^{(n-1)}(t) & \ldots \ldots . . & f_{n}^{(n-1)}(t)
\end{array}\right| \begin{aligned}
& \text { Wronskian of Functions } \\
& f_{1}(t), f_{2}(t), \ldots \ldots . f_{n}(t) \\
& \text { on I }
\end{aligned}
$$

The Wronskian and Linear Independence Theorem

If $W\left[f_{1}, f_{2}, \ldots . f_{n}\right](t) \neq 0$ for all t on the interval I, where $f_{1}, f_{2}, \ldots . f_{n}$ are defined then $\left\{f_{1}, f_{2}, \ldots . f_{n}\right\}$ is a set of linearly independent functions.

Note that if $\left\{f_{1}, f_{2}, \ldots . f_{n}\right\}$ is linearly dependent on I, then $W\left[f_{1}, f_{2}, \ldots . f_{n}\right](t) \equiv 0$ on I. So to show independence, we only need to find one $t_{0} \in I$ such that $W\left[f_{1}, f_{2}, \ldots f_{n}\right]\left(t_{0}\right) \neq 0$
\Rightarrow linear independence at one point in I implies independence over I

Example $\left\{t^{2}+1, t^{2}-1,2 t+5\right\}$

$$
W(t)=\left|\begin{array}{ccc}
t^{2}+1 & t^{2}-1 & 2 t+5 \\
2 t & 2 t & 2 \\
2 & 2 & 0
\end{array}\right|=-8 \neq 0
$$

[^0]
Important: The Converse Is Not True!

Suppose that the Wronskian $W\left[f_{1}, f_{2}, \ldots . f_{n}\right](t)=0$ over an entire interval I, where $f_{1}, f_{2}, \ldots . f_{n}$ are defined on I. Does this imply that $\left\{f_{1}, f_{2}, \ldots . f_{n}\right\}$ is linearly dependent on I ? NO

$$
\begin{array}{rlrl}
f_{1}(t)=t^{3} & t \geq 0 & f_{2}(t) & =0
\end{array} \quad t \geq 0 \quad W\left(f_{1}, f_{2}\right)=\left|\begin{array}{ll}
f_{1} & f_{2} \\
f_{1}^{\prime} & f_{2}^{\prime}
\end{array}\right|=0
$$

However, it is directly evident that f_{1} can never be a scalar multiple of f_{2}, so they are linearly independent and are not linearly dependent!

Using the Wronskian to Establish Linear Independence for the Solutions of a Linear ODE

If $\vec{x}_{1}, \ldots . . \vec{x}_{n}$ solve a homogenous linear ODE system and if there exists any t for which the Wronskian $W\left(\vec{x}_{1}, \ldots . . \vec{x}_{n} ; t\right) \neq 0$ then $\vec{x}_{1}, \ldots . . \vec{x}_{n}$ are linearly independent solutions.

Here the Wronskian $W\left(\vec{x}_{1}, \ldots . . \vec{x}_{n} ; t\right)$ is defined as -

$$
W\left(\vec{x}_{1}, \ldots ., \vec{x}_{n} ; t\right)=\left|\begin{array}{ccc}
\mid & \ldots & \mid \\
\vec{x}_{1}(t) & \ldots & \vec{x}_{n}(t) \\
\mid & \ldots & \mid
\end{array}\right|
$$

Example

$$
\begin{aligned}
& x^{\prime}=3 x-2 y \\
& y^{\prime}=x \\
& z^{\prime}=-x+y+3 z
\end{aligned} \Rightarrow \overrightarrow{X^{\prime}}=\left(\begin{array}{ccc}
3 & -2 & 0 \\
1 & 0 & 0 \\
-1 & 1 & 3
\end{array}\right) \vec{X} \quad \vec{X}=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \quad \vec{x}_{1}=\left(\begin{array}{c}
0 \\
0 \\
e^{3 t}
\end{array}\right) ; \vec{x}_{2}=\left(\begin{array}{c}
2 e^{2 t} \\
e^{2 t} \\
e^{2 t}
\end{array}\right) ; \vec{x}_{3}=\left(\begin{array}{c}
e^{t} \\
e^{t} \\
0
\end{array}\right)
$$

Solutions

We have three of them but

$$
W\left(\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3} ; t\right)=\left|\begin{array}{ccc}
0 & 2 e^{2 t} & e^{t} \\
0 & e^{2 t} & e^{t} \\
e^{3 t} & e^{2 t} & 0
\end{array}\right|=2 e^{2 t} e^{3 t} e^{t}-e^{t} e^{3 t} e^{2 t}=e^{6 t} \neq 0
$$

are they independent?
$\Rightarrow \vec{x}_{1}(t), \vec{x}_{2}(t), \vec{x}_{3}(t)$ are linearly independent for any $t \in(-\infty, \infty)$

Therefore, the solution to this homogenous ODE is

$$
\begin{aligned}
& \vec{X}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+c_{3} \vec{x}_{3}=c_{1}\left(\begin{array}{c}
0 \\
0 \\
e^{3 t}
\end{array}\right)+c_{2}\left(\begin{array}{c}
e^{t} \\
e^{t} \\
0
\end{array}\right)+c_{3}\left(\begin{array}{c}
2 e^{2 t} \\
e^{2 t} \\
e^{2 t}
\end{array}\right)=\left(\begin{array}{c}
c_{2} e^{t}+c_{3}(2) e^{2 t} \\
c_{2} e^{t}+c_{3} e^{2 t} \\
c_{1} e^{3 t}+c_{3} e^{2 t}
\end{array}\right) \\
& x(t)=\quad c_{2} e^{t}+2 c_{3} e^{2 t} \\
& y(t)=\quad c_{2} e^{t}+c_{3} e^{2 t} \\
& z(t)=c_{1} e^{3 t}+\quad c_{3} e^{2 t}
\end{aligned}
$$

It would be interesting to solve this system using another approach! See the next slide!

$$
\begin{aligned}
& \begin{array}{l}
x^{\prime}=3 x-2 y \\
y^{\prime}=x \\
z^{\prime}=-x+y+3 z
\end{array} \quad \Rightarrow \begin{array}{c}
\text { Manipulate these algebraically } \\
\text { to show that }
\end{array} \\
& z^{\prime \prime \prime}-3 z^{\prime \prime}-4 z^{\prime}+12 z=0
\end{aligned}
$$

$$
x(t)=
$$

$$
c_{2} e^{t}+2 c_{3} e^{2 t}
$$

|
$y(t)=\quad c_{2} e^{t}+c_{3} e^{2 t}$
$z(t)=c_{1} e^{3 t}+\quad c_{3} e^{2 t}$

Similarly, the first two equations can be manipulated to get

Now differentiate $y(t)$ to get $x(t)$

$$
y^{\prime \prime}-3 y^{\prime}+2 y=0
$$

$$
\text { Solution: } y(t)=c_{2} e^{t}+c_{3} e^{2 t}
$$

$$
x(t)=y^{\prime}(t)
$$

Solution: $x(t)=c_{2} e^{t}+2 c_{3} e^{2 t}$

Consider the solution $\quad z(t)=k_{1} e^{3 t}+k_{2} e^{-2 t}+k_{3} e^{2 t} \quad$ of $\quad z^{\prime \prime \prime}-3 z^{\prime \prime}-4 z^{\prime}+12 z=0$
Substituting this in $z^{\prime}=-x+y+3 z \quad$ we get $\quad 5 k_{2} e^{-2 t}+k_{3} e^{2 t}=-x+y$

Note that, we also got

$$
\begin{aligned}
& x(t)=c_{2} e^{t}+2 c_{3} e^{2 t}, \quad y(t)=c_{2} e^{t}+c_{3} e^{2 t} \quad \text { (see previous slide) } \\
& \Rightarrow \quad-x+y=-c_{3} e^{2 t}
\end{aligned}
$$

Therefore,

$$
5 k_{2} e^{-2 t}+k_{3} e^{2 t}=-c_{3} e^{2 t}
$$

$\Rightarrow k_{1}$ can be arbitrarily chosen (i.e. $k_{1}=c_{1}$ as earlier), but k_{2} and k_{3} must satisfy the above equation

Comparing the coefficients of $\boldsymbol{e}^{-\mathbf{2 t}}$ and $\boldsymbol{e}^{\mathbf{2 t}}$ in the LHS and RHS of the above, we get $k_{2}=0, k_{3}=-c_{3}$
Therefore,

$$
z(t)=c_{1} e^{3 t}++c_{3} e^{2 t}
$$

Same solution as before!

[^0]: Therefore, $\left\{t^{2}+1, t^{2}-1,2 t+\right.$ $5\}$ is linearly independent over t in $(-\infty, \infty)$

