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Discrete Time Markov Chains

Figure 3.1: Russian
Mathematician Andrei
Andreevich Markov
(courtesy: Wikipedia).

Markov Chains were first formulated as a stochastic model1 by Russian mathematician

1 A. A. Markov. “Extension
of the law of large numbers
to dependent quantities (in
Russian)”. In: Izvestiia Fiz.-
Matem. Obsch. Kazan Univ.,
(2nd Ser.) 15 (1906), pp. 135–
156

Andrei Andreevich Markov. Markov spent most of his professional career at St. Petersburg
University and the Imperial Academy of Science. During this time, he specialized in the the-
ory of numbers, mathematical analysis, and probability theory. His work on Markov chains
utilized finite square matrices (stochastic matrices) to show that the two classical results of
probability theory, namely, the weak law of large numbers and the central limit theorem, can be
extended to the case of sums of dependent random variables.

Markov chains have wide scientific and engineering applications in statistical mechanics,
financial engineering, weather modeling, artificial intelligence, and so on. In this chapter
we will look at a few applications as we build the concepts of Markov chains. Additionally,
we will also implement a technique (using Markov chains) to solve a simple and practical
engineering problem related to aircraft control and automation.

3.1 Chapter objectives

The chapter objectives are listed as follows.

1. Students will learn the definition and application of Markov processes.

2. Students will learn the definition of stochastic matrix (a.k.a. probability transition matrix) and
perform simple matrix calculations to compute conditional probabilities.

3. Students will learn to solve engineering and scientific problems based on discrete time
Markov chains using multi-step transition probabilities.

4. Students will learn to compute return times and hitting times to Markov states.

5. Students will learn to classify different Markov states.

6. Students will learn to use the techniques of discrete time Markov chains introduced in
this chapter to solve a complex engineering problem related to flight control operations.
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3.2 Chapter project: Automatic prediction of control laws of an aircraft using the Viterbi
algorithm

3.2.1 Prologue: tracking aircraft control laws

In this project, we will learn to implement the Viterbi algorithm to automatically pre-
dict the operational flight control law by analysing the pitch data of the aircraft. The
Viterbi algorithm is a practical application of discrete time Markov chains. This project
illustrates, in a simplified manner, the framework within which an aircraft’s operational
performance is monitored in real time by ground crew. It also demonstrates, as an exam-
ple, how mathematical technology and engineering redundancies work together towards
developing newer and safer flight experiences for passengers. Modern aircrafts use fly-
by-wire control systems. This means that control surfaces like ailerons, rudders, etc. are
maneuvered under the command of electronic signals originating from the flight control
computers instead of the pilot’s manual inputs. The scope of the fly-by-wire system is de-
termined by the active flight control law. There are primarily three different control laws
in an Airbus A-330 aircraft: (i) normal law, (ii) alternate law, and (iii) direct law.

Figure 3.2: An Airbus
A-330 is shown here
steadily climbing to-
wards its cruising al-
titude. The aircraft is
under the command of
the autopilot and op-
erating under Normal
flight control law.

Normal law offers a variety of automated protection to the flight envelope, e.g. auto-
matic stall protection, bank angle protection, high speed protection, etc. The aircraft can
be commanded by the autopilot in this mode. Normal law may be applicable in ground,
flight or flare (landing) modes. The aircraft performance is considered to be optimal if it is
operational under normal law during its flight. On the other hand, when one or more of
the sensors or control surfaces are impaired, then the flight may be forced to operate un-
der alternate law. Some automatic protections like stall protection, bank angle protection,
and high speed protection may be lost depending on the exact nature of the failure(s).
This may happen as a consequence of faults in the horizontal stabilizer, a single eleva-
tor fault, loss of a yaw-damper actuator, loss of slat or flap position sensors, etc. (ALT-1
law) or due to engine flame outs, faults in two inertial or two air-data reference units,
damage to all spoilers, aileron faults, etc. (ALT-2 law). Aircraft operation under this al-
ternate control law will often require some direct intervention by the pilot(s). Finally, a
further degradation of flight control affairs results in the activation of the direct law. Un-
der this law, autopilot function is always lost and most of the automatic flight envelope
protections are lost. Pilots will have to manually recover and fly the airplane. This type
of degradation of flight controls may result from dual-engine flame outs, dual elevator
failures, etc.

Figure 3.3: An erratic
pitch profile of an air-
craft reveals a likely
faulty elevator and a
flight operation gov-
erned by alternate or
direct law.

During the course of a flight, tracking and recording the operational control law of
an aircraft can reflect the performance profile of the aircraft.2 One of the ways this real

2 An aircraft whose flight
signature is predominantly
governed by normal law can
be assumed to be in better
operational health than an
aircraft whose flight signature
is interspersed with several
stints of alternate and direct
control modes.

time health of the aircraft may be captured by ground control and maintenance crew is by
analysing the binary pitch up/ down data transmitted to it via the satellite based Aircraft
Communications Addressing and Reporting System (ACARS). e.g., frequent changes in the
pitch of the aircraft (nose up-nose down motions) may be a result of faulty elevators (part
of the horizontal stabilizer), thereby activating the alternate or direct control laws. This
example illustrates that the pitch data can serve as an important metric for predicting the
active control law. In this project, we will use the Viterbi algorithm to predict the profile
of the active control law during flight by analyzing the real time pitch data profile.

We will return to this case-study in a subsequent section of this chapter after we have
developed some conceptual background on Markov chains.



discrete time markov chains 111

3.3 Definition: Markov chain

A Markov chain (or equivalently, a Markov process) is a stochastic process describing a series of
possible events whereby the probability of an event at a given instant depends solely on the outcome of
the previous event.

In this chapter, we will consider only those Markov processes whose outcomes are dis-
crete events. These are known as Discrete Time Markov Chains (DTMC). e.g., we may think
of a game of badminton. The outcome of a given shot in a rally is a discrete event such as a
smash, a drop, a lift, etc. Any given shot by a player likely depends on the previous shot by
the opponent, and most likely not so much on any previous shot played by either player.
To elucidate this further, consider a smash played by player A. It is nearly impossible that a
return shot by player B will also be a smash, it can perhaps be a lift or a drop. So essentially,
a game of badminton can be modelled as a Markov process. We will analyze this particular
example in greater detail later in this chapter. Figure 3.4: A smash

by the far-end player
cannot be returned by
a smash by the near-
end player in a game
of badminton which
can be modelled as a
Markov process.

Mathematically, we may denote a sequence of events as
{

Xn
}

n∈I,n≥0, where the subscript
n is a non-negative integer that indexes time. Xn is a random variable which may take a
value from the set of possible outcomes (events), S = {xn, xn−1, ..., x1, x0}. Then,

{
Xn
}

describes a Markov process when

P
(

Xn = xn

∣∣∣∣Xn−1 = xn−1, Xn−2 = xn−2, ..., X0 = x0

)
= P

(
Xn = xn

∣∣∣∣Xn−1 = xn−1

)
. (3.1)

Consequentially, a Markov process is characterized by the property of memorylessness.

3.3.1 Stochastic matrix or probability transition matrix, P

In the previous paragraph, the set S forms the sample space comprising all possible out-
comes (events) of the Markov process. The elements of this set are known as the states of
the Markov chain. The probability (or likelihood) of transition between two states is com-
piled in matrix form. This matrix is known as the stochastic matrix or the probability transition
matrix and is denoted by pij (equivalently, pi,j) or simply, P. Here, the subscripts i, j refer to
the fact that we are considering a transition from state i to state j. i, j can take values from
{1, 2, 3, .., n}. It may be noted here that the sum of the entries of any row of P must be iden-
tical to one due to one of the axioms of probability. The following example will illustrate
how we may construct this matrix.

Figure 3.5: A game of
roulette in a casino.
A gambler’s fortune
may be modelled as a
Markov process.

3.3.2 Example: Gambler’s ruin

Consider a game of gambling in which, on any turn, we win | 1 with probability
p = 0.4 or lose | 1 with probability p′ = (1 − p) = 0.6. Suppose we adopt a strategy
that we quit playing upon making a fortune of | 10 while the casino throws us out if
we have lost all our money. Construct a suitable stochastic matrix.
Let Xn := amount of money we have after ‘n plays’. S = {0, 1, 2, ..., 10}. Then clearly,
for all i = {1, 2, ..., 9}, the following is true based on the rules of the gambling game,

P
(

Xn+1 = i+ 1
∣∣∣∣Xn = i, Xn−1 = in−1, ..., X0 = i0

)
= P

(
Xn+1 = i+ 1

∣∣∣∣Xn = i
)
= pi,i+1 = 0.4.

(3.2)
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Likewise, pi,i−1 = 0.6. Additionally, p0,0 = 1 because there is no chance of making
money when we have lost everything since the casino will throw us out. Similarly,
p10,10 = 1 because | 10 is the maximum allowable fortune we can accumulate. States 0
and 10 are known as absorbing states as there is no escape from these two states in this
gambling model. Finally, we may now write the stochastic matrix as follows,

P =



j = 0 j = 1 j = 2 · · · j = 10
i = 0 1 0 0 · · · 0
i = 1 0.6 0 0.4 · · · 0
i = 2 0 0.6 0 0.4 · · 0
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·

i = 9 0 0 · · 0.6 0 0.4
i = 10 0 0 · · 0 0 1


. (3.3)

3.4 Multi-step transition probabilities

The stochastic matrix P pertains to a single step in the stochastic transition of the underlying
process. But in many practical cases, we may be interested in knowing the likelihood of
transitions between states in more than one step. e.g., mathematically, the probability of
transitioning from state i to state j in m(> 1) steps may be expressed as follows.

pm
i,j ≡ pm(i, j) = P

(
Xn+m = j

∣∣Xn = i
)
; m > 1. (3.4)

Figure 3.6: Class motil-
ity in society can
also be analyzed by a
Markov model.

3.4.1 Example: Social motility

Consider that Xn represents the social class of a family in the nth generation. Assume
that there are broadly three social groups based on income, viz., lower=1, middle=2,
upper=3. Based on a certain demographic and income analysis, the motility within
this society was captured succinctly by the following stochastic matrix.

P =


1 2 3

1 0.7 0.2 0.1
2 0.3 0.5 0.2
3 0.2 0.4 0.4

. (3.5)

If Ginny’s parents were of middle income class, what is the probability that Ginny
belongs to the upper income class and her children belong to the lower income group?
Here we are asked to find P

(
X2 = 1, X1 = 3

∣∣X0 = 2
)
, where X0 refers to Ginny’s

parents generation, X1 refers to her generation while X2 refers to her children’s gener-
ation. We will derive the answer from first principles and subsequently claim that the
same may be deduced by formal inspection of the respective pi,j entries.
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P
(
X2 = 1, X1 = 3

∣∣X0 = 2
)

=

def. P(A|B) = P(A,B)
P(B)

P
(
X2 = 1, X1 = 3, X0 = 2

)
P
(
X0 = 2

)

=

multiply & divide by same term

P
(
X2 = 1, X1 = 3, X0 = 2

)
P
(
X1 = 3, X0 = 2

) ×
P
(
X1 = 3, X0 = 2

)
P
(
X0 = 2

)
=

conditional probability

P
(
X2 = 1

∣∣X1 = 3, X0 = 2
)
× P

(
X1 = 3

∣∣X0 = 2
)

=

Markov property

P
(
X2 = 1

∣∣X1 = 3
)
× P

(
X1 = 3

∣∣X0 = 2
)

=
entries of P

p3,1 p2,3 =

terms re-arranged

p2,3 p3,1 = 0.2× 0.2 = 0.04.

Now that we have seen all the intermediary steps starting from the expression that
we originally set out to evaluate, it may be convenient to notice that the answer could
have been formally read out by multiplying the probability entries for the successive
transitions 2 (middle) → 3 (upper) and 3 (upper) → 1 (lower) .
Let us now suppose that Sheila, from the same society, belongs to the lower income
group; what is the probability that her grandchildren will belong to upper class? This
probability can be easily evaluated to be p2(1, 3), i.e., (1, 3) entry of the P2 matrix.

Example: Constructing a stochastic matrix

Consider the Markov Chain {Xn}n≥0 with state space S = {1, 2, 3, 4}.
Find the stochastic matrix P, such that:
(i) p1j = 0.2 for j = 1, 2, 3
(ii) p2j = 2p2,j+1 for j = 1, 2, 3
(iii) p31 = 0.1, p32 = p33 = 0.2
(iv) p4j =

1
2 p4,j−1 for j = 2, 3, 4

Solution:

p14 = 1− (0.2 + 0.2 + 0.2) = 0.4

p24 + p23 + p22 + p21 = p24(1 + 2 + 4 + 8) = 15p24 = 1

⇒ p24 =
1

15
, p23 =

2
15

, p22 =
4

15
, p21 =

8
15

p34 = 1− (0.1 + 0.2 + 0.2) = 0.5

p41 + p42 + p43 + p44 = p41 +
1
2

p41 +
1
4

p41 +
1
8

p41 = 1
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⇒ p41

(
1 +

1
2
+

1
4
+

1
8

)
= 1

⇒ p41 =
8

15
, p42 =

4
15

, p43 =
2

15
, p44 =

1
15

P =


0.2 0.2 0.2 0.4

8
15

4
15

2
15

6
15

0.1 0.2 0.2 0.5
8

15
4

15
2

15
1

15

 .

Figure 3.7: Schematic
illustration of the
Chapman-Kolmogorov
equation to com-
pute multi-step tran-
sition probabilities
through intermedi-
ary partitioning events
Xm = k, k ∈ S .

3.4.2 Chapman-Kolmogorov equation

Multi-step transition probabilities for Markov models may also be computed by considering
the Chapman-Kolmogorov equation given below.

pm+n
i,j = ∑

k∈S
pm

i,k pn
k,j. (3.6)

Let us find out why the above may be true. Consider that while transitioning from state i to
state j, we pass through an intermediary state k. This k may be any of the states from the set
S . We will consider the intermediary event Xm = k as a partitioning event.3 3 cf. law of total probability:

P(A) = ∑
Bi∈S

P(A|Bi)P(Bi),

where the Bis are the parti-
tioning events!

pm+n
i,j = P

(
Xn+m = j

∣∣X0 = i
)

= ∑
k∈S

P
(
Xm+n = j, Xm = k

∣∣X0 = i
)

= ∑
k∈S

P
(
Xm+n = j

∣∣Xm = k, X0 = i
)

P
(
Xm = k

∣∣X0 = i
)

=

Markov property

∑
k∈S

pn
k,j p

m
i,k = ∑

k∈S
pm

i,k pn
k,j.

Example: Conditional expectation from a stochastic matrix

Consider the Markov chain {Xn}n≥0 with state space S = {1, 2, 3} and the probability
transition matrix P

P =

1 2 3
1
2
3

 0.1 0.4 0.5
0.3 0.3 0.4
0.2 0.7 0.1


(a) Compute P (X7 = 3, X5 = 2 | X4 = 1, X3 = 2)
(b) Compute E (X3 | X2 = 2)



discrete time markov chains 115

Solution:
(a) Using the definition of conditional probability, we get

P (X7 = 3, X5 = 2 | X4 = 1, X3 = 2) =
P (X7 = 3, X5 = 2, X4 = 1, X1 = 2)

P (X4 = 1, X3 = 2)

=
P (X7 = 3, X5 = 2, X4 = 1, X5 = 2)

P (X5 = 2, X4 = 1, X5 = 2)

× P (X5 = 2, X4 = 1, X3 = 2)
P (X4 = 1, X3 = 2)

= P (X7 = 3 | X5 = 2, X4 = 1, X3 = 2)

× P (X5 = 2 | X4 = 1, X3 = 2)

Using the Markov property, we get:

P (X7 = 3, X5 = 2 | X4 = 1, X3 = 2) = P (X7 = 3 | X5 = 2)× P (X5 = 2 | X4 = 1)

= p2
23 × p12.

Now using the Chapman-Kolmogorov equation, we get

p2
23 =

3

∑
k=1

p2,k pk,3 = 0.3× 0.5 + 0.3× 0.4 + 0.4× 0.1 = 0.15 + 0.12 + 0.04 = 0.31.

Therefore,

P (X7 = 3, X5 = 2 | X4 = 1, X3 = 2) = p2
23 × p12 = 0.31× 0.4 = 0.124.

(b)
E (X3 | X2 = 2) = ∑

x∈S
xP (X3 = x | X2 = 2)

= 1× P (X3 = 1 | X2 = 2)

+ 2× P (X3 = 2 | X2 = 2)

+ 3× P (X3 = 3 | X2 = 2)

= 1× p21 + 2× p22 + 3× p23

= 1× 0.3 + 2× 0.3 + 3× 0.4

= 0.3 + 0.6 + 1.2.

E (X3 | X2 = 2) = 2.1.

The Chapman-Kolmogorov equation will be revisited when we study continuous time
Markov chains (CTMC). This equation will be used to derive the detailed balance condition
and finds many applications as a tool to investigate behavior of equilibrium systems.

3.5 Distribution of states

Consider that for a given Markov model, the stochastic matrix, P is known. Further, let us
suppose that an initial probability distribution of states is also known. We may be interested
in knowing the probability distribution of states at a later time (or in the long run).
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Mathematically, we may denote the initial distribution of k-states, {s1 s2 ... sk}, by

µ⃗(0) = (µ
(0)
1 µ

(0)
2 ... µ

(0)
k ) =

(
P(X01 = s1) P(X02 = s2) ... P(X0k = sk)

)
,

where ∑k
i=1 µ

(0)
i = 1 due to one of the axioms of probability. Here, the 0 in the superscripts

and subscripts represent the initial time instant and the indices i = {1, 2, ..., k} refer to the
states. Then the probability distribution of states after n-steps may be written as

µ⃗(n) = µ⃗(0)Pn. (3.7)

To find the long run distribution of states, we take the limit n→ ∞ in equation (3.7).

Figure 3.8: Daily
weather forecasts can
be modelled based on a
Markov model.

3.5.1 Example: Weather model

Consider a simple weather model that predicts weather on a given day as follows: (i)
the weather stays the same on any given day as the previous day 75% of the time, and
(ii) the weather changes from day to day 25% of the time. For simplicity we may only
consider two weather patterns in this model, viz., sunny, and rainy. What is the long
time weather forecast given that on a certain day it is observed to be sunny?
We must first begin by constructing the stochastic matrix P based on the transitions
between the weather patterns (states): s for sunny, and r for rainy.

P =
( s r

s 0.75 0.25
r 0.25 0.75

)
. (3.8)

µ⃗(1) = µ⃗(0)P = (1 0)

(
0.75 0.25
0.25 0.75

)
= (0.75 0.25)

µ⃗(2) = µ⃗(0)P2 = µ⃗(1)P = (0.625 0.375)

·
·

µ⃗(∞) = µ⃗(0)P∞ = (0.5 0.5)

This is the equilibrium distribution of states.4 Thus, the long time weather forecast is
that it is equally likely to be sunny or rainy according to this model.

4 What is µ⃗(∞)P?

From all of the aforementioned discussions on the applications of a Markov model, we
may glean that the stochastic matrix encodes almost all of the information about the under-
lying Markov process.
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3.5.2 Example: Badminton game, what is a winning strategy?

Consider a Markov model of a game of badminton. For simplicity, let us consider that
a player chooses to play one of three shots, viz., smash (S), drop (D), and lift (L). The
objective is to devise a winning strategy given a match situation. Based on the data
generated over several games, the following table lists the probability of a return shot
played by a player given a certain type of shot played by their opponent.

shot return shot probability

D D 1/3

D L 1/3

D S 0

L D 1/5

L L 1/5

L S 2/5

S L 2/5

S D 1/5

S S 0

1. Identify an appropriate state space for the Markov model.

2. Construct the stochastic matrix P.

3. Given a lifted serve, what are the chances that there is a winner in three shots?

4. In a rally, if a player receives a lift from their opponent, which shot option maxi-
mizes his chance of winning the rally in the return shot?

Figure 3.9: Should I
smash or feign and drop
to win the rally now?

Solution: The Markov analysis is as follows.

1. State space, S = {D, L, S, W} where W refers to a winning shot.

2. The stochastic matrix may be computed based on the data table.5

P =

D L S W


D 1/3 1/3 0 1/3
L 1/5 1/5 2/5 1/5
S 1/5 2/5 0 2/5
W 0 0 0 1

(3.9)

3. µ⃗(3) = µ⃗(0)P3 = (0.1316 0.1476 0.1067 0.6142). µ
(3)
W = p3

LW = 0.6142 which is the
(L, W) entry of the P3 matrix.6

4. Essentially we must compute P
(
X2 = W, X1 =?

∣∣X0 = L
)

where ? may be any one
of L, D or S. So we will compute each of (pLD × pDW), (pLS × pSW), (pLL × pLW)

and pick the strategy that maximizes the resulting probability. It turns out that
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the respective probabilities are 0.06667, 0.16, 0.04. Hence, a return smash will most
likely win us the rally in that shot.7

5 It is a good practice to check that each of the rows of P add up to unity!
6 In an actual game, an overall optimal strategy must account for maximizing the chances of winning
the rally in a certain number of shots as well as possibly continuing the rally long enough to tire out the
opponent!
7 An AI assisted training session based on such a Markov model will enable a player to devise optimal shot
selections during an actual game!

3.6 Recurring events in Markov chains
Figure 3.10: A bank
teller queue may be a
Markov model with re-
curring events such as a
state when the queue is
empty.

In a finite state system with stochastic transitions between states, a Markov chain may visit
certain states (events) multiple times. The time interval (steps) between such successive visits
to a given state may itself be a random number. Repeated visits and the inter-arrival time
between such visits may be of interest depending on the application. e.g., a kiosk of a bank
teller may have a long queue of customers waiting to be served. The number of persons in
the queue may represent the states of a Markov chain. The arrival process can be modelled
in terms of a Poisson process while the departures depend on exponentially distributed
service times. The bank operations policy may rely on analyzing the time interval between
successive visits to state 0 and/or by the sojourn time (total time a customer spends in the
system) which may involve analyzing recurring events in the Markov model of the bank
teller system.8 8 It turns out that the Markov

model of a teller system may
be a continuous time Markov
chain (CTMC) depending
on how we model the time
elapse process. We will study
CTMCs in greater detail in a
subsequent chapter.

3.6.1 Definition: Hitting probability

Let
{

Xn
}

n∈{0,I+} represent a Markov chain with state space S . Let A ⊂ S . Further, let us
define the following:

TA := first time the chain hits A starting from outside (or inside) A

:= min
{

n ≥ 0
∣∣Xn ∈ A

}
, (3.10)

with TA = 0 if X0 ∈ A and TA = ∞ if {n ≥ 0
∣∣Xn ∈ A} = {}. Then, we may define the

probability of hitting state A through a state l ∈ A starting from a state k ∈ S as below,

gk

initial state

(l

final state

) = P
(
XTA = l

∣∣X0 = k
)
. (3.11)

The above definition helps us to calculate the chance of hitting a certain state A beginning
from a given state. Why is this useful to know? In the context of the bank teller example
above, if we find that gs(0) = 0 for any s > 0,9 then this will likely invite the attention of the 9 number of customers s in an

operational queue is positivebank manager to change the operational policy of the bank (e.g., by introducing additional
tellers). This may be required to ensure that the bank teller receives a much needed break
from serving customers during a long shift.

3.6.2 Iterative formula for hitting probability

Let k ∈ S \ A.10 We have TA ≥ 1 given X0 = k. 10 S \ A ≡ S− {A}, i.e. the set
S minus the contents of the
set A.
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gk(l) = P
(
XTA = l

∣∣X0 = k
)

=

sum over partitioning events

∑
m∈S

P
(
XTA = l, X1 = m

∣∣X0 = k
)

=

cf. the law of total probability

∑
m∈S

P
(
XTA = l

∣∣X1 = m, X0 = k
)

P(X1 = m
∣∣X0 = k)

=

Markov property

∑
m∈S

P
(
XTA = l

∣∣X1 = m
)︸ ︷︷ ︸

gm(l)

P(X1 = m
∣∣X0 = k)︸ ︷︷ ︸

pkm

.

= ∑
m∈S

gm(l)pkm. (3.12)

Therefore, the iterative formula for gk(l) is given as follows.

gk(l) = ∑
m∈S

pkmgm(l) where k ∈ S \ A, l ∈ A. (3.13)

3.6.3 Definition: Absorbing state

We have seen absorbing states in earlier examples. Formally, consider the case pkl = Ik=l
11 11 Here Ik=l = 1 only when

k = l. I is an indicator
function.

for all k, l ∈ A. Here, the state k is an absorbing state, i.e.
{

Xn
}

is trapped (absorbed) in
A ⊂ S .12

12 It may be interest-
ing to note the following:

∑
l∈A

gk(l) + P
(
TA = ∞

∣∣Xo = k
)
= 1

3.6.4 Iterative formula for mean hitting times and mean absorption times

We have stated earlier that the time duration between successive visits to a certain state of a
Markov chain is a random variable. In many applications, we may be interested to know the
expected value of this random variable. Let us define this expected value as

hk(A) := E
(
TA
∣∣X0 = k

)
. (3.14)
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Clearly, hk(A) = 0 ∀k ∈ A ⊂ S . Further, ∀k ∈ S \ A,

hk(A) = E
(
TA
∣∣X0 = k

)
=

sum over partitioning events

∑
m∈S

E
(
TA, X1 = m

∣∣X0 = k
)

=

cf. the law of total expectation

∑
m∈S

E
(
TA
∣∣X1 = m, X0 = k

)
P
(
X1 = m

∣∣X0 = k
)

=

Markov property

∑
m∈A

E
(
TA
∣∣X1 = m

)︸ ︷︷ ︸
1

pkm + ∑
m∈S\A

E
(
TA
∣∣X1 = m

)︸ ︷︷ ︸
1 + hm(A)

pkm

= ∑
m∈A

pkm + ∑
m∈S\A

(1 + hm(A))pkm

= ∑
m∈S

pkm + ∑
m∈S\A

hm(A)pkm

=

axiom: ∑i∈S pi = 1

1 + ∑
m∈S\A

pkmhm(A) + ∑
m∈A

pkm����:0
hm(A)

=

adding a term whose value is 0

1 + ∑
m∈S

pkmhm(A). (3.15)

Summarizing, we have

hk(A) = 1 + ∑
m∈S

pkmhm(A) for all k ∈ S \ A. (3.16)

In the above derivation E
(
TA
∣∣X1 = m

)
= 1 in the first summation because the Markov chain

has already moved one step forward (X0 → X1) and has then hit the desired state m ∈ A. In
the second summation, E

(
TA
∣∣X1 = m

)
= 1 + hm(A) because the chain has moved one step

forward and the counting process must be reset again until the chain hits the desired state
A.

3.6.5 Definition: First return time and its mean

The time (in number of steps) taken to make a first return to a certain state y ∈ S is defined
as follows:

Tr
y := min

{
n ≥ 1

∣∣Xn = y
}

; y ∈ S , (3.17)

with Tr
y = ∞ if Xn ̸= y ∀n ≥ 1. Note Tr

y = Ty if X0 ̸= y.
Tr

y is a random variable. Let us define µx(y) = E
(
Tr

y
∣∣X0 = x

)
≥ 1. Clearly, when x = y, we

have the definition of mean return time. Following the spirit of the derivation in sec. 3.6.4, it
is possible to derive an iterative formula for the mean return time. Here, we simply state the
final result.

µx(y) = 1 + ∑
m∈S,m ̸=y

pxmµm(y) (3.18)

In the following section we will work out an illustrative example using the aforementioned
iterative formulae.
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Figure 3.11: Markov
conducted a statistical
experiment to under-
stand the structure of
language by analyzing
Alexander Pushkin’s
poem Eugene Onegin.
Shown here is a single
stanza from the poem
(English translated
version) with the char-
acteristic rhyming of
the words. A Markov
model analysis of the
language used in the
poem (colored illus-
trations) shows the
distinctively different
alternation noticed in
the poem compared
to a random sequence
of letters (grey illus-
trations) of the same
length. Here v refers
to vowels and c refers
to consonants. The
stochastic matrices P

are shown on the right.
Can you compute the
mean hitting times and
mean return times to
consonants and vow-
els? (courtesy: First
Links in the Markov
Chain by Brian Hayes,
AMERICAN Scientist,
101 (2), pg. 92, March-
April 2013, DOI:
10.1511/2013.101.92)
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3.6.6 Example: Return times in a game of badminton

Let us divide each side of a badminton court into two quadrants (play zones) labelled
1 and 2 as shown in the picture alongside (cf. Figure 3.15). These quadrants may

be regarded as states of a simple Markov model. Data collected over several games of
badminton may enable us to populate a simple stochastic matrix as follows.

P =

1 2[ ]
1 2/3 1/3
2 1/3 2/3

(3.19)

1. During a rally, given a shot by a player from play zone 1 , after how many shots
(on an average) does the shuttle return to quadrant 1 on either side of the net?

Now, let us re-define the Markov chain by constructing new states corresponding to
the direction of shots played. e.g., the states of the new model are 11 (correspond-
ing to a shot 1→ 1) and so on.

2. Construct the stochastic matrix Pnew for this new model.

3. Given a valid service 1 → 1, what is the average number of shots before either
player can expect a shot 2→ 1 from their opponent?

Figure 3.12: A bad-
minton court with
designated play zones
(states). In a rally, the
shuttle may be consid-
ered to make random
visits to these states. A
player’s preparedness
to receive the shut-
tle, effectively, may be
guided by mean return
and hitting time esti-
mates which may be
included during their
practice sessions before
an official game.

Solution:
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1. We begin with the simple model P and use equation (3.18) to compute µ1(1).

µ1(1) = 1 + p12µ2(1) = 1 +
1
3

µ2(1)

µ2(1) = 1 + p22µ2(1) = 1 +
2
3

µ2(1)

whence µ2(1) = 3 and µ1(1) = 2, i.e. on an average, every second shot in a rally re-
turns to play zone 1 given a serve from quadrant 1 .

2. Let us now construct Pnew. The relevant states are 11 , 12 , 21 , and 22 . Now,

for a state transition 11 → 11 , a sequence of following shots must be played:
1 → 1 and 1 → 1. Note that the naming convention of the states is set up in such
a way that the last numeral of the current state must be the same as the first nu-
meral of the next state. This means transitions like 11 → 21 , 21 → 12 , etc. are

not possible. Consequently, the transition 11 → 11 can happen with a proba-
bility 2/3 because this transition is wholly concurrent with the event whereby the
most recent shot is 1 → 1 which has a probability 2/3 associated with it. Similar
arguments enable us to construct Pnew as follows.

Pnew =

11 12 21 22


11 2/3 1/3 0 0

12 0 0 1/3 2/3

21 2/3 1/3 0 0

22 0 0 1/3 2/3.

(3.20)

3. Now using equation (3.18), we have the following system of equations:

µ11(21) = 1 +
2
3

µ11(21) +
1
3

µ12(21),

µ12(21) = 1 +
2
3

µ22(21), and

µ22(21) = 1 +
2
3

µ22(21);

whose solution is µ22(21) = 3, µ12(21) = 3 and µ11(21) = 6. Therefore, given
a valid service 1 → 1, either player will have to wait 6 shots on an average before
they may expect a shot 2→ 1.

3.7 Chapter project: Automatic prediction of aerodynamic control laws of an aircraft
using the Viterbi algorithm

3.7.1 Interlude: the Viterbi Algorithm

Now that we have learnt the fundamental ideas of Markov chains, we are in a position to
deduce the Viterbi algorithm. We will use the Viterbi algorithm to predict the control laws
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prevailing in the aircraft cockpit.

I. Stochastic and Emission matrices: We will consider a certain stochastic process with
the following state space of dimension K, S = {s1, s2, ..., sK}. Associated with this process is
a T dimensional observation set Y = {y1, y2, ..., yT} from amongst a possible N dimensional
observation space O = {o1, o2, ..., oN}. Note: yn ∈ O. Further, consider an initial probability
distribution given by Π = {π1, π2, ..., πK}.13 The probability transition matrix P is a K × K 13 As a trial example, we

may think of a state space
S = {rainy, sunny}, an
observational space O =
{walking, shopping, cleaning}
and a sequence of observa-
tions of activity patterns of
Billoo, the handyman as Y =
{walking, walking, shopping,
walking, cleaning} over the
past five days. The objective
here is to find the most
likely sequence of (hidden)
states X corresponding to
the sequence of observables
Y. E.g., one possible likely
outcome may be X = {sunny,
sunny, cloudy, sunny, rainy}.
But instead of guesswork, the
readers are encouraged to use
the predictions of the Viterbi
algorithm to list the weather
pattern for the corresponding
days.

matrix with entries

pij(t) := probability of transitioning from state si to state sj = Prob(xt = sj
∣∣xt−1 = si),

and the emission matrix E is a K× N matrix with entries

eij(t) := probability of observing oj from state si = Prob(yt = oj
∣∣xt−1 = si).

Figure 3.13: American
electrical engineer An-
drew Viterbi invented
the Viterbi algorithm
which is a dynamic pro-
gramming algorithm
originally used for con-
volutional codes over
noisy digital communi-
cation systems. It has
since found multiple
applications in natural
language processing,
computational linguis-
tics, bioinformatics,
speech recognition, etc.
(courtesy: Wikipedia).

Succinctly, we will often write si ≡ i and oj ≡ j where it must be understood that xt = i
refers to the random variable xt taking the state si and yt = j refers to the random variable yt

being assigned the observable oj. The goal of the prediction algorithm is to forecast the most
likely sequence of states (events) X = {x1, x2, ..., xT}, xn ∈ S given a prescribed sequence of
observables Y, i.e. we need to compute

argmaxXProb(X
∣∣Y) = argmaxXProb(Y

∣∣X)Prob(X) = argmaxXProb(Y, X).

Here argmax
(

f (x)
)

returns the value of x at which the function f (x) attains its maximum.
In this project, we will implement the Viterbi algorithm to predict the most likely sequence
of states that corresponds to a sequence of associated observables assuming a Markovian
stochastic model (also known as the Hidden Markov Model (HMM)).

II. Construction and essential calculations of the Viterbi algorithm: In what follows,
we will fix the notation Prob(X1 = x1) ≡ Prob(x1) ≡ π1. Note that if T = 2, then

Prob(Y, X) ≡ Prob(y1, y2, x1, x2)

= Prob(y1, y2, x2
∣∣x1)Prob(x1)

= Prob(y1, y2
∣∣x2, x1)Prob(x2

∣∣x1)Prob(x1)

= Prob(y1
∣∣y2, x2, x1)Prob(y2

∣∣x2, x1)p12π1

= Prob(y1
∣∣x1, x2, y2)Prob(y2

∣∣x2)p12π1

= Prob(y1
∣∣x1)Prob(y2

∣∣x2)p12π1 (3.21)

In general, we have

Prob(Y, X) ≡ Prob(Y = y1, ..., yT , X = x1, ..., xT)

= Prob(x1)︸ ︷︷ ︸
π1

Prob(y1
∣∣x1) Prob(x2

∣∣x1)︸ ︷︷ ︸
p12

Prob(y2
∣∣x2) · · · Prob(yT

∣∣xT)

The Viterbi algorithm involves recursively computing the Viterbi entries Vk,t

Vk,t := max Prob
(
(y1, ..., yt), (x1, ..., xt = k)

)
= probability of the best (most likely) sequence of states (ending with state k, i.e. xt = k)

corresponding to the sequence of observables (y1, ..., yt).
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II.1. Recursive computation of Vk,t:

By comparing the terms on the right hand side of eq. (3.22) and the definition of the
Viterbi entries above, we see that Vk,t can be obtained recursively and consequently using
the argmax function, we can find the most likely sequence of events. The algorithm includes
calculation of the following three important terms.

Figure 3.14: The tower
of Hanoi game (cour-
tesy: Science Buddies,
Sabine De Brabandere,
Scientific American,
2017.)

• Vk,t = max
α∈S

(
Prob(yt = j

∣∣xt = k)pαkVα,t−1
)
= max

α∈S

(
ekj pαkVα,t−1

)
with Vk,1

set
= Prob(y1 = om

∣∣x1 = k)πk = ekmπk, and

• xT = argmax
α∈S

(
Vα,T

)
.

• xt−1 = back_pointer(xt, t) = value of x used to compute Vk,t ∀t > 1.

II.2. Aesthetics of dynamic programming algorithms: The Viterbi algorithm belongs to a
class of algorithms known as dynamic programming. This class of algorthms was developed
by American applied mathematician Richard Bellman in 1953. The classic problem solved
by this family of algorithms is the travelling salesman problem.14 Another classic puzzle that 14 The Traveling Salesman

Problem: A Computational
Study by David L. Applegate, et.
al., Princeton University Press,
2007.

can be solved by dynamic programming methodology is the tower of Hanoi game. These are
just a few examples of many diverse applications of the dynamic programming method in
general, and the Viterbi algorithm in particular.

Figure 3.15: Robert
Bosch of Oberlin Col-
lege and his collabo-
rators have used the
travelling salesman
problem to gener-
ate artwork. This is
yet another exam-
ple of the proximal
inter-relationship be-
tween mathematics,
computational algo-
rithms and aesthet-
ics (courtesy: http:
//www.math.uwaterloo.

ca/tsp/data/art/.
Further reading: Con-
tinuous line drawings via
the traveling salesman
problem by Robert Bosch
and Adrianne Herman,
Operations Research
Letters, 32, pp. 302–303,
2004.In the subsequent sections, we will present you with a strategy to implement the Viterbi

algorithm in your computer, test your code using the weather model example presented in

http://www.math.uwaterloo.ca/tsp/data/art/
http://www.math.uwaterloo.ca/tsp/data/art/
http://www.math.uwaterloo.ca/tsp/data/art/
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the margin in the previous page, and finally use the tested version of the algorithm to pre-
dict the outcomes of the prevailing control laws in the aircraft as introduced in the prologue.
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Software Implementation

Pseudocode of the Viterbi algorithm:

INPUT: S, Π, E, P, Y = {y1, y2, ..., yT}.

Part I: Initialization.
for each i of K states

viterbi_prob(i,1) = πi ∗ eiy1

viterbi_path(i,1) = 0
end for

Part II: Compute Viterbi probabilities and Viterbi path.
for each j of T-1 observations starting with T=2

for each i of K states

viterbi_prob(i,j) = max
α∈S

(
eiyj ∗ pαi∗viterbi_prob(α, j− 1)

)
viterbi_path(i,j) = argmax

α∈S

(
eiyj ∗ pαi∗viterbi_prob(α, j− 1)

)
end for

end for

xT = szT where zT := argmax
α∈S

(
viterbi_prob(α, T)

)
The appearance of eij in the computation of viterbi_path(i,j) is unnecessary
because it is non-negative and independent of α (so you may choose to skip it).

Part III: Retracking the most likely path X.
for each j of T-1 observations from T to 2

xj−1 = szj−1 where zj−1 =viterbi_path(zj, j)
end for

OUTPUT: X = {x1, x2, ..., xT}

The student may test the veracity of the Viterbi implementation by first attempting the
trial example introduced earlier.15 15 Use the Markovian model

explained above to predict the
weather for the last five days.
Assume the initial weather
distribution Π = {0.43, 0.57},
the probability transition

matrix P =

(
0.2 0.8
0.4 0.6

)
,

where state 1 is rainy and
state 2 is sunny, and the
probability emission matrix

E =

(
0.2 0.4 0.4
0.3 0.25 0.45

)
,

where the columns (observa-
tions) are labelled in order of
walking, shopping and cleaning,
respectively.

3.8 Classification of Markov states and advanced topics

The behavior of a Markov chain is characterized by the properties of the stochastic matrix P

and its states. The states of a Markov chain can be classified based on the entries of P.

3.8.1 Definition: Communicating states

A state j ∈ S is accessible from a state i ∈ S , i.e. i 7→ j , if there exists a finite integer

n ≥ 0, s.t. pn
ij := P

(
Xn = j

∣∣X0 = i
)
> 0.16

16 i 7→ i even if pii = 0.

Further, if i 7→ j and j 7→ i , then i ↔ j , i.e. i and j communicate. When two
states communicate with each other, they are said to belong to the same class.
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3.8.2 Example: Communicating states

Consider below a stochastic matrix of a Markov chain with states labelled as 1, 2, 3,
and 4.

P =

1 2 3 4


1 1/3 1/3 1/3 0
2 1/2 0 0 1/2
3 2/5 1/5 0 2/5
4 1/4 1/4 1/2 0

(3.22)

In this model:

1. 3 ↔ 3 even though p33 = 0.

2. 2 7→ 3 even though p23 = 0 because p24 > 0 and p43 > 0; hence there exists N

s.t. pN
23 > 0. In fact, p2

23 = 0.4167 > 0.

Further p32 = 1/5 > 0. Therefore, 2 ↔ 3 .

Since the binary relation↔ satisfies reflexivity, symmetry, and transitivity properties;↔ is
an equivalence relation.17 17 The equivalence relation↔

induces a partition of S into
disjoint subsets A1, A2, ..., Am
s.t. S =

⋃m
i=1 Ai . Additionally,

the following are true.

1. i ↔ j for all i, j ∈ Aq,

2. i ��←→ j whenever
i ∈ Ap and j ∈ Aq and
p ̸= q.

3.8.3 Definition: Irreducible and Reducible Markov chains

A Markov chain is irreducible if all states belong to one class, i.e. if all states communicate
with each other.18

18 An irreducible Markov
chain is also known as an
ergodic chain.

Example: Consider a Markov chain with a stochastic matrix,

P =

1 2 3 4 5


1 0 1 0 0 0
2 1/2 0 1/2 0 0
3 0 2/3 0 0 1/3
4 1/3 0 0 0 2/3
5 0 0 0 1 0

.

In this example all states communicate with each other.

A Markov chain that is not irreducible is said to be reducible, i.e. there is at least one state
(or a group of states) from which the chain cannot re-visit other states not in that group. Figure 3.16: In this

Markov model, state
3 is an absorbing state
and does not commu-
nicate with states 1 and
2.

In Figure 3.16, we have used a graphical representation of Markov chain showing the
states within circles and the probabilities of transition between states are represented by the
numbers along with the arrows.
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3.8.4 Mean number of returns to a state

Let qij ≡ pn
ij = P

(
Xn = j

∣∣X0 = i
)

for some n ≥ 1 represents the probability of return to state
j in a finite time starting from state i. Now let us define the number of visits to state j by the
chain {Xn}n∈I, n≥0 as follows

E
(

Rj
∣∣X0 = i

)
=

∞

∑
m=0

mP
(

Rj = m
∣∣X0 = i

)
=

∞

∑
m=1

mqijqm−1
jj (1− qjj)

= (1− qjj)qij

∞

∑
m=1

mqm−1
jj

= (1− qjj)qij
1

(1− qjj)2

=
qij

1− qjj
. (3.23)

Here we have used the identity ∑∞
m=1 mrm−1 = 1

(1−r)2 , where |r| ≤ 1. The terms to the right
hand side of the second equality may require further explanation. Firstly, the first visit to
state j from state i must happen in n steps with probability qij. This must be followed by
m− 1 re-visits to state j starting from state j with probability qm−1

jj . This is true because the
count for the re-visits to state j happens beginning with state j as the chain is reset as X0 = j
after the first visit to state j. Since the summand of interest pertains to m visits to state j (and
no more), we must account for the probability (1− qjj) of no additional visits to state j after
the mth visit.

3.8.5 Definition: Recurrent states

i ∈ S is recurrent if qii = pn
ii = 1.19 Additionally, 19 Let {Xn}n≥0, n∈I be a

Markov chain with finite state
space S ; then {Xn}n≥0, n∈I
has at least one recurrent
state.

A recurrent state i ∈ S is said
to be positive recurrent
if µi(i) < ∞, and is
null recurrent if µi(i) = ∞.

1. state i is recurrent if and only if E
(

Ri
∣∣X0 = i

)
= ∞,

2. state i is recurrent if and only if P
(

Ri = ∞
∣∣X0 = i

)
= 1.

3.8.6 Definition: Transient states

A state i ∈ S is transient when it is not recurrent, i.e.,

P
(

Ri = ∞
∣∣X0 = i

)
< 1.

Further,

1. i ∈ S is transient if and only if

E
(

Ri
∣∣X0 = i

)
< ∞.

2. i ∈ S is transient if and only if
∞

∑
n=1

pn
ii < ∞.
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3.8.7 Periodicity of a Markov chain

The period of a state i is the greatest common divisor (denominator) of all integers n > 0 for
which pn

ii > 0.20 20 Periodicity is a class prop-
erty. e.g., if states i and j
belong to the same class, then
they have the same period.

A Markov chain is aperiodic if it has period one.

Example: Consider a Markov chain with P =

1 2 3
1 0 1 0

2 0 0 1
3 1 0 0

. Here pii = 0, and

p2
ii = 0 but p3

ii = 1 > 0 and so on. Thus, the chain has period three.

3.9 Chapter project: Automatic prediction of aerodynamic control laws of an aircraft
using the Viterbi algorithm

3.9.1 Epilogue: results of the Viterbi code for predicting the aircraft control laws

Consider the following probability transition matrix P and probability emission matrix E

that is available from the Airbus database.

P =

0.7 0.1 0.2
0.4 0.5 0.1
0.2 0.3 0.5

 , E =

0.6 0.4
0.3 0.7
0.2 0.8


and Π = {0.8, 0.1, 0.1}. At a certain time, the company receives the following sequence of
pitch measurements at five minute intervals. Devise a model using the Viterbi algorithm to
predict the corresponding sequence of control laws that will likely be activated during the
same time instant.

Pitch data: ‘up’, ‘down’, ‘down’, ‘down’, ‘down’, ‘up’, ‘up’, ‘down’, ‘down’, ‘down’, ‘down’.
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3.11 Exercise problems

1. Consider the Markov chain {Xn}n≥0 with state space S = {1, 2} and transition matrix

P =

1 2[ ]
1 0.3 0.7
2 0.5 0.5

.

(a) Compute P
(
X7 = 2, X5 = 1

∣∣X4 = 1, X3 = 2
)
.

(b) Compute E
(
X2
∣∣X1 = 2

)
.

2. (Mean hitting times) Our bunny, whose name is Honey, hops around on a triangle. At
each step he moves to one of the other two vertices at random (his decision is based on
the flip of a fair two-sided coin). What is the expected time taken by Honey to get from
vertex 1 to vertex 2?

3. Consider a Markov chain {Xn}n≥0 on the state space {0, 1, 2, 3, 4} with stochastic matrix

P =

0 1 2 3 4


0 0 1/4 1/4 1/4 1/4
1 1 0 0 0 0
2 0 1 0 0 0
3 0 0 1 0 0
4 0 0 0 0 1

.

(a) Draw the graph of this chain.

(b) Find the periods of states 0, 1, 2, and 3.

(c) Which states are absorbing, recurrent and transient?

(d) Is the Markov chain reducible? Why?

Figure 3.17: How fast
will this game be done
on an average?

4. (Snakes and ladder) Consider a nine-squares snakes and ladder board as shown in Figure
3.17. At each turn, a player tosses a fair coin and advances one or two steps forward de-
pending on whether the outcome is a tail or a head respectively. Upon landing at the base
of a ladder, the player can climb to the top of the ladder, whereas falling at the mouth of a
snake brings them down to the tail of the snake.

(a) Construct an appropriate Markov model and P.

(b) In how many turns on an average can the game be completed by a player?

(c) What is the probability that a player who has made it to square 6 will complete the
game before falling to the "START"?

5. (Population genetics)21 In a certain genetics model, we consider an n − by − n array of 21 Results for The Stepping
Stone Model for Migration
in Population Genetics by S.
Sawyer, Annals of Probability,
vol. 4, pp. 699–728, 1979.

cells. Each cell is initially colored any one of k different colors. At each step, a cell is cho-
sen at random. This cell then chooses one of its eight neighbors at random and assumes
the color of that neighbor. At the boundaries, we may consider a periodic wrapping of
left-right and top-bottom columns and rows. The missing diagonal neighbor of any cor-
ner cell may be replaced by the cell that is in the diametrically opposite corner. With these
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boundary adjustments, each cell in the array is adjacent to exactly eight other cells. A
state in this Markov chain is a description of the color of each cell. The number of states is
kn2

. Even for small n, the size of the state space is enormous. We will analyze this model
with the help of a computer simulation. Begin with a random initial configuration of
k = 2 colors with n = 20 and comment on the long run behavior of the model in terms
of the prevalent colors. Repeat the simulation by taking k = 5 and n = 50. State your
observations with possible reasons.

6. (Time to freedom) Our squirrel from an earlier chapter is stuck in a maze with four cells,
labelled as 1, 2, 3, and 4 as shown in Figure 3.18. The outside world is the squirrel’s path-
way to freedom (labelled as 0). The route to freedom can only be accessed through cell 4.
The squirrel starts initially in cell 2. From each cell, the squirrel can move to either of the
neighboring cells with equal probability. We assume that at each move the squirrel acts
independent of the past (our squirrel is not keen to learn from its past mistakes). How
many moves will our squirrel make (on an average) before attaining freedom?

Figure 3.18: How many
hops to freedom?

7. (Wandering Daisy) Our friend Daisy has decided to take a day off from work on a cloudy
day. Instead, she is having thoughts about visiting the apple orchard just outside her
hamlet but is concerned about the impending rain. Let us analyze her prospects and see if
she would make it to the orchard given this uncertainty in her mind.

Deterministic mind: Daisy starts walking from her home towards the orchard. Half way
through she changes her mind and starts returning home because she thinks that it might
rain soon. The clouds begin clearing up soon or so it seems. So half way through her
return, she changes her mind and starts walking towards the orchard again. Once again
half way through that she starts returning home and so on. Construct a mathematical
model of her location at every inflection point and comment on her eventual destination.
Hint: Identify Daisy’s home as the point "zero" and the orchard as the point "one". Formulate
a sequence {Xn} where Xn denotes the position at the nth inflection point. What is the limiting
value of Xn as n→ ∞?

Stochastic mind version 1:22 Daisy starts at "zero" (home), goes half way through and 22 The random sequence Xn
generated by Daisy in the
stochastic case is a model
that is applicable in many
real life practical situations.
e.g., let Ym be a random
sequence denoting the level
of water in a tank at time
instances m, m ≥ 0, m ∈ I.
Let τ1, τ2, τ3, ... be the times
at which the sequence {Ym}
has a local minimum or
maximum. Let Xm = Yτm .
Suppose the tank has a
global minimum at "zero"
and a global maximum
normalised to be "one". Then
the sequence {Yτm} must
behave analogous to Daisy’s
wanderings. The model for
the tank can be similarly
thought of as a model for
stock prices, amount of
rainfall, inventory level or
any other randomly varying
sequence in a bounded
interval.

then flips a fair coin. If the coin comes out heads, she continues towards "one" (orchard)
and if the coin comes out tails, she turns back towards "zero". Again half way through
whatever direction she is headed, she flips a fair coin and either continues in that direc-
tion or goes in the opposite way based on the outcome of the toss. Construct a math-
ematical model of her location at every inflection point and comment on her eventual
destination. Hint: Formulate a sequence Xn where Xn denotes the position at the nth inflection
point. Is Xn a Markov chain? Why? What is the limiting value of Xn as n→ ∞?

Stochastic mind version 2: Now, each time Daisy has to decide on the direction, she uses a
biased coin with probability p( ̸= 1/2) for heads and then goes a fraction α of the distance
in that direction. Construct a mathematical model of her location at every inflection point
and comment on her eventual destination.

8. (Invariant or stationary distributions) Given a probability measure π⃗, we say that π⃗(∞) is
invariant or stationary if

π⃗(∞)P = π⃗(∞).
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Consider a Markov chain {Xn}n≥0 with states arranged on the vertices of a triangle. The
transition probabilities between the states are as follows: p12 = 1, p23 = 1/2, p31, p33 =

1/2, p22 = 1/2.

(a) Construct P.

(b) Find the stationary distribution of states π⃗(∞).

9. (Diffusion as a Markov process) Gas molecules move about randomly in a box which
is divided into two halves symmetrically by a partition. A hole is made in the partition.
Suppose there are N molecules in the box.

(a) Show that the number of molecules on one side of the partition just after a molecule
has passed through the hole evolves as a Markov chain.

(b) What are the transition probabilities?

(c) What is the invariant distribution of this chain?

10. (Time reversal and entropy) Past and future are independent of each other in a Markov
process. So this entails an inherent time symmetry.23 However, convergence to stationary 23 A Markov chain in equilib-

rium, run backwards, is again
a Markov chain. The transi-
tion matrix may, however, be
different.

distribution of states is asymmetrical in time, i.e. a highly organised state decays to a dis-
organised one (the invariant distribution) when viewed backwards. This is analogous to a
situation that embodies an increase in entropy. Therefore, time symmetry in the absolute
sense demands that we begin at equilibrium. Consider a Markov chain {Xn}0≤n≤N with

P =

 0 2/3 1/3
1/3 0 2/3
2/3 1/3 0


and π⃗ = (1/3 1/3 1/3) is invariant.

(a) Compute the stochastic matrix P̂ of the chain Yn = XN−n.

(b) Is the chain reversible? (Hint: Check if P̂ = P?)

□
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