Solution

Q. 1
a) Independent trials with a constant probability of a success. Trials have only two outcomes.
b)
i) 0.2835
ii) 0.9718
c)
$P(M 1)=0.3$
$P(M 2)=0.45$
$P(M 3)=0.25$
Conditional probability
$P(D \mid M 1)=0.02$
$P(D \mid m 2)=0.03$
$P(D \mid M 3)=0.02$
Joint Probability
$P(D \mid M 1) P(M 1)=0.02(0.3)=0.006$
$P(D \mid M 2) P(M 2)=0.03(0.45)=0.0135$
$P(D \mid M 3) P(M 3)=0.02(0.25)=0.005$
Now the total probability is:
$P(D)=0.006+0.0135+0.005$
Thus if a final product is randomly selected the probability is 2.45% that it is defective.

The probability of that it was made by machine M3 given that it was defective is:
$P(M 3 \mid D)=0.005 / 0.0245=0.2040$
d)
(i) The probability that a person be female given that she is a smoker is:

$$
f(y \mid x)=\frac{f(x, y)}{f(x)} \quad=\frac{0.1}{0.75}=0.1333
$$

(ii) The probability that the person is non-smoker given that the person is female:

$$
f(x \mid y)=\frac{f(x, y)}{f(y)} \quad=\frac{0.15}{0.25}=0.6
$$

(e)

X	days	$f(x)$	$x^{*} f(x)$	x -mu	Sq	sqfx
0	8	0.08	0	-2.35	5.5225	0.4418
1	12	0.12	0.12	-1.35	1.8225	0.2187
2	30	0.3	0.6	-0.35	0.1225	0.03675
3	40	0.4	1.2	0.65	0.4225	0.169
4	7	0.07	0.28	1.65	2.7225	$\begin{array}{r} 0.19057 \\ 5 \end{array}$
5	3	0.03	0.15	2.65	7.0225	$\begin{array}{r} 0.21067 \\ 5 \end{array}$
			2.35			
						1.2675
i) $P(X>3)=.1$						
ii) $\mathrm{EV}=2.35$						
iii) $\operatorname{Var}=1.26$						

Q. 2
b)

