Full Name:

\qquad UID: \qquad
Instructions: You must not be in possession of any cheat sheet, notes, or electronic devices like laptops or calculators inside the examination hall. Answer all five multiple-choice questions (MCQs). The score allotted to each question is one. There will be a penalty of $\mathbf{0 . 5}$ marks for each wrong answer and a penalty of $\mathbf{0 . 2 5}$ marks for each un-attempted question. Maximum score is $\mathbf{5}$. Tick against the correct option. Only one option is correct in every question.

1. Let T be a linear transformation which is a projection of the space \mathbb{R}^{3} to the x-axis embedded in \mathbb{R}^{3}. What are the eigenvalues of the matrix representation of T ?
$\sqrt{ } 0,0,1$$0,1,1$$1,1,1$,0,0,0
2. Find the matrix S such that the given matrix $M=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1\end{array}\right]$ is diagonalizable $\left(D=S^{-1} M S\right)$, where D is the diagonal matrix equivalent to matrix M.

$$
\begin{aligned}
& \bigcirc S=\left[\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right] \\
& S=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \\
& S=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \\
& \sqrt{ } \text { there doesn't exist any } S .
\end{aligned}
$$

3. Let V be the subspace of \mathbb{R}^{3} spanned by $u=\{1,1,1\}$ and $v=\{1,1,-1\}$. The orthonormal bases of V obtained by the Gram-Schmidt orthonormalization process are:

$$
\begin{aligned}
& \bigcirc\left\{\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),\left(\frac{2}{3}, \frac{2}{3}, \frac{4}{3}\right)\right\} \\
& \bigcirc\{(1,1,0),(1,0,1)\} \\
& \sqrt{ }\left\{\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}\right)\right\} \\
& \bigcirc\left\{\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right),\left(\frac{2}{\sqrt{6}},-\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{6}}\right)\right\}
\end{aligned}
$$

4. The set of linearly independent eigenvectors corresponding to the eigenvalues of the matrix $\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$ is:
$\bigcirc\{(i, 1),(1, i)\}$
$\sqrt{ }\{(i,-1),(-i,-1)\}$
$\bigcirc\{(i,-1),(1, i)\}$
\bigcirc None of these
5. Suppose the matrix $A=\left[\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right]$ has an eigenvalue 1 with associated eigenvector $v=\left[\begin{array}{l}2 \\ 3\end{array}\right]$. Find $A^{5} v$.
\bigcirc Data is insufficient
$\bigcirc\left[\begin{array}{ll}\alpha^{50} & \beta^{50} \\ \gamma^{50} & \delta^{50}\end{array}\right]$
$\bigcirc\left[\begin{array}{c}32 \\ 243\end{array}\right]$
$\sqrt{ }\left[\begin{array}{l}2 \\ 3\end{array}\right]$
