nth Lagrange polynomial that agrees with f(x) at points x0, x1, x2, ..., xn

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) \cdot \dots \cdot (x - x_{n-1})$$

* The puzzle is to find the constants a0, a1, a2,

* clearly a0 = f(x0) and likewise for a1, a2,

* These a0, a1, a2,.... are given in terms of a divided difference formula

The divided difference formalism of the nth degree Lagrange polynomial is

$$P_n(x) = f[x_0] + \sum_{k=1}^n f[x_0, x_1, \dots, x_k](x - x_0) \dots (x - x_{k-1})$$

where $f[x_0, x_1, \dots, x_k] = a_k$.

 $P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n \prod_{i=0}^{n-1} (x - x_i)$

The divided differences $f[x_0, x_1, x_2, \dots, x_k]$ can be found recursively as follows:

$$->f[x_i]=f(x_i)$$
 is the 0th divided difference of f with respect to x_i

$$-> f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{(x_{i+1} - x_i)}$$
 is the first divided difference of f with respect to x_i and x_{i+1}

equivalent

$$-> f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{(x_{i+2} - x_i)}$$
 is the second divided difference

.

$$-> f[x_i, x_{i+1}, \dots, x_{i+k}] = \frac{f[x_{i+1}, x_{i+2}, \dots, x_{i+k}] - f[x_i, x_{i+1}, \dots, x_{i+k-1}]}{(x_{i+k} - x_i)} \text{ is the kth divided}$$

difference of f with respect to $x_i, x_{i+1}, \ldots, x_{i+k}$

.

$$->f[x_0,x_1,\ldots,x_n]=\frac{f[x_1,x_2,\ldots,x_n]-f[x_0,x_1,\ldots,x_{n-1}]}{(x_n-x_0)} \text{ is the one and only one nth divided difference.}$$

** The value of

 $f[x_0, x_1, x_2, \dots, x_k]$ is independent of the order in which the nodes/numbers x_0, x_1, \dots, x_k occur.

** The divided difference table is shown in the next slide.

Newton's divided difference table

x	f(x)	First divided differences	Second divided differences	Third divided differences	
x_0	$f[x_0]$	$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$			
x_1	$f[x_1]$	W1 W0	$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$	$f[x_1, x_2, x_3] - f[x_0, x_1, x_2]$	
x_2	$f[x_2]$	$f[x_1, x_2] = \frac{f[x_2] - f[x_1]}{x_2 - x_1}$	$f[x_1, x_2, x_3] = \frac{f[x_2, x_3] - f[x_1, x_2]}{x_3 - x_1}$	$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$	
_	fr. 1	$f[x_2, x_3] = \frac{f[x_3] - f[x_2]}{x_3 - x_2}$	$f[x_2, x_3, x_4] = \frac{f[x_3, x_4] - f[x_2, x_3]}{x_4 - x_2}$	$f[x_1, x_2, x_3, x_4] = \frac{f[x_2, x_3, x_4] - f[x_1, x_2, x_3]}{x_4 - x_1}$	
<i>x</i> ₃	$f[x_3]$	$f[x_3, x_4] = \frac{f[x_4] - f[x_3]}{x_4 - x_3}$	$J[x_2, x_3, x_4] = {x_4 - x_2}$	$f[x_2, x_3, x_4, x_5] = \frac{f[x_3, x_4, x_5] - f[x_2, x_3, x_4]}{x_5 - x_2}$	
x_4	$f[x_4]$	$f[x_4, x_5] = \frac{f[x_5] - f[x_4]}{x_5}$	$f[x_3, x_4, x_5] = \frac{f[x_4, x_5] - f[x_3, x_4]}{x_5 - x_3}$		
<i>x</i> ₅	$f[x_5]$	$\int [x_4, x_5] - \frac{1}{x_5 - x_4}$			

Question: Construct the interpolating polynomial using the data given in this table

x	f(x)		
1.0	0.7651977		
1.3	0.6200860		
1.6	0.4554022		
1.9	0.2818186		
2.2	0.1103623		

Solution The first divided difference involving x_0 and x_1 is

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0} = \frac{0.6200860 - 0.7651977}{1.3 - 1.0} = -0.4837057.$$

The remaining first divided differences are found in a similar manner and are shown in the fourth column in Table

i	x_i	$f[x_i]$	$f[x_{i-1},x_i]$	$f[x_{i-2}, x_{i-1}, x_i]$	$f[x_{i-3},\ldots,x_i]$	$f[x_{i-4},\ldots,x_i]$
0	1.0	0.7651977				
			-0.4837057			
1	1.3	0.6200860		-0.1087339		
			-0.5489460		0.0658784	
2	1.6	0.4554022		-0.0494433		0.0018251
			-0.5786120		0.0680685	
3	1.9	0.2818186		0.0118183		
			-0.5715210			
4	2.2	0.1103623				

Divided difference table

The second divided difference involving x_0 , x_1 , and x_2 is

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0} = \frac{-0.5489460 - (-0.4837057)}{1.6 - 1.0} = -0.1087339.$$

The remaining second divided differences are shown in the 5th column of Table The third divided difference involving x_0 , x_1 , x_2 , and x_3 and the fourth divided difference involving all the data points are, respectively,

$$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0} = \frac{-0.0494433 - (-0.1087339)}{1.9 - 1.0}$$
$$= 0.0658784.$$

and

$$f[x_0, x_1, x_2, x_3, x_4] = \frac{f[x_1, x_2, x_3, x_4] - f[x_0, x_1, x_2, x_3]}{x_4 - x_0} = \frac{0.0680685 - 0.0658784}{2.2 - 1.0}$$
$$= 0.0018251.$$

The coefficients of the Newton forward divided-difference form of the interpolating polynomial are along the diagonal in the table. This polynomial is

$$P_4(x) = 0.7651977 - 0.4837057(x - 1.0) - 0.1087339(x - 1.0)(x - 1.3)$$
$$+ 0.0658784(x - 1.0)(x - 1.3)(x - 1.6)$$
$$+ 0.0018251(x - 1.0)(x - 1.3)(x - 1.6)(x - 1.9).$$

* Newton's divided difference formula can be expressed in a simplified form when the nodes are arranged consecutively with equal spacing; whence h = x(i+1) - x(i) for each i=0,1,2,...,n-1 and x = x0 + sh

Forward Differences

The **Newton forward-difference formula**, is constructed by making use of the forward difference notation Δ .

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{1}{h} (f(x_1) - f(x_0)) = \frac{1}{h} \Delta f(x_0)$$
$$f[x_0, x_1, x_2] = \frac{1}{2h} \left[\frac{\Delta f(x_1) - \Delta f(x_0)}{h} \right] = \frac{1}{2h^2} \Delta^2 f(x_0),$$

and, in general,

$$f[x_0,x_1,\ldots,x_k]=\frac{1}{k!h^k}\Delta^k f(x_0).$$

Since $f[x_0] = f(x_0)$, Eq. (3.11) has the following form.

Newton Forward-Difference Formula

$$P_n(x) = f(x_0) + \sum_{k=1}^{n} {s \choose k} \Delta^k f(x_0)$$
Binomial coefficient =
$$\frac{s(s-1)...(s-k+1)}{k!}$$