
Lab Assignment: Matrix Operations using

SymPy in Python

1 Introduction

SymPy is a Python library for symbolic mathematics. It allows for exact sym-
bolic manipulations of matrices, making it an excellent tool for algebraic compu-
tations. This lab will focus on performing basic and advanced matrix operations
using SymPy.

2 Instructions

1. Read each problem carefully and implement the required code in Python
using SymPy. 2. Compare results with NumPy where necessary. 3. Submit
your Python scripts along with outputs.

3 Exercises

3.1 Basic Matrix Operations

1. Matrix Creation: Create the following matrices using SymPy:

A =

[
1 2
3 4

]
, B =

[
2 0
1 3

]
(1)

Print both matrices using the SymPy pprint function.

2. Addition and Subtraction: Compute and print A+B and A−B.

3. Matrix Multiplication: Compute and print A×B.

4. Scalar Multiplication: Compute and print 3A.

5. Transpose: Compute and print the transpose of A.

6. Determinant: Compute and print the determinant of A.

7. Inverse: Compute and print the inverse of A.

1



3.2 Advanced Matrix Operations

1. Symbolic Matrix Operations: Define a symbolic matrix

M =

[
x 1
2 y

]
(2)

Compute and print its determinant.

2. Solving Matrix Equations: Solve the system of equations represented
by [

2 3
1 4

] [
x
y

]
=

[
5
6

]
(3)

for x and y.

3. Matrix Equation: Solve for x and y given the equation[
x+ y 2
3 x− y

]
=

[
4 2
3 1

]
(4)

4. Matrix Exponentiation using Loops: Compute the power An for a
given integer n using a loop instead of the built-in power function.

5. Generating Fibonacci Sequence using Matrix Multiplication: Im-
plement a loop-based approach to compute the n-th Fibonacci number
using matrix exponentiation.

3.3 Comparison with NumPy

1. Compare the determinant of matrixA computed using SymPy and NumPy.
Explain any differences.

2. Compute the inverse of matrix A using both SymPy and NumPy and
explain the output format differences.

3. Demonstrate why SymPy is more useful than NumPy for handling sym-
bolic matrices by computing the inverse of

M =

[
a2 b3

c2 d4

]
(5)

symbolically.

2



Lab Assignment: Matrix Operations using

SymPy in Python

1 Introduction

SymPy is a Python library for symbolic mathematics. It allows for exact sym-
bolic manipulations of matrices, making it an excellent tool for algebraic compu-
tations. This lab will focus on performing basic and advanced matrix operations
using SymPy.

2 Instructions

1. Read each problem carefully and implement the required code in Python
using SymPy. 2. Compare results with NumPy where necessary. 3. Submit
your Python scripts along with outputs.

3 Exercises

3.1 Basic Matrix Operations

1. Matrix Creation: Create the following matrices using SymPy:

A =

[
2 5
8 10

]
, B =

[
−2 5
−1 8

]
Print both matrices using the SymPy pprint function.

2. Addition and Subtraction: Compute and print A+B and A−B.

3. Matrix Multiplication: Compute and print A×B.

4. Scalar Multiplication: Compute and print 3A.

5. Transpose: Compute and print the transpose of A.

6. Determinant: Compute and print the determinant of A.

7. Inverse: Compute and print the inverse of A.

1



3.2 Advanced Matrix Operations

1. Matrix Transposition Property: Given the matrices:

A =

[
x y
1 x+ y

]
, B =

[
2x+ 1 y + 1
2x x+ 2y

]
Show that (AB)T = BTAT by computing both sides explicitly.

2. Solving Matrix Equations: Solve the system of equations represented
by [

4 6
1 2

] [
x
y

]
=

[
26
8

]
for x and y.

3. Matrix Equation: Solve for x and y given the equation[
2x− y 2

3 x− y2

]
=

[
4 2
3 1

]
4. Zeros of Determinant: Find the values of x such that the determinant

of matrix M is zero.

M =

[
x2 + x− 13 1

x− 12 x2

]
5. Matrix Exponentiation using Loops: Compute the power An for a

given integer n using a loop instead of the built-in power function.

6. Generating Fibonacci Sequence using Matrix Multiplication: Com-
pute the sum of the n-th and (n− 1)-th Fibonacci numbers using matrix
multiplication.

2


