Diagonalizable Matrices

3.1 Agenda Item

- Diagonalization of matrices
- Similarity transformation
- Spectral decomposition of matrices

Last Lecture:

- We define evs and EVs of a square matrix
- determinant and trace of a matrix and its relation with evs

3.2 Diagonalizable Matrices

Certain forms of matrices are convenient to work with. For example

- Upper/Lower triangular matrices(why?)
- Diagonal forms(why?)

Think finding evs and powers of above matrices.

Wouldn't it be nice if

$$
\begin{gathered}
A \longrightarrow D \\
(\text { any } n \times n \text { matrix }) \quad(\text { diagonal form })
\end{gathered}
$$

$A \in \mathbf{M}_{n \times n}(\mathbb{F})$ is diagonalizable over \mathbb{F} if there exists an invertible matrix S over \mathbb{F} such that $A=S D S^{-1}$, or equivalently $D=S^{-1} A S$.

Note that the evs of A and D will be the same and the above relation $D=S^{-1} A S$ is known as the similarity transformation.
Q. When is a matrix diagonalizable?

Ans: $A \in \mathbf{M}_{n \times n}(\mathbb{F})$ is diagonalizable if and only if A has n linearly independent EVs in \mathbb{F}^{n}.

Note that an $n \times n$ complex matrix that has n distinct eigenvalues is diagonalizable.
Example 9. Q. Find a matrix that diagonalizes $A=\left(\begin{array}{cc}2 & -1 \\ 2 & 4\end{array}\right)$.
Ans: Solve $\operatorname{det}(A-\lambda I)=0$ to obtain $\lambda_{1}=3+i$ and $\lambda_{2}=3-i$. Solving $A x=\lambda_{i} x$ for $i=1,2$, we obtain

$$
X_{1}=\binom{1}{-1-i}, X_{2}=\binom{1}{-1+i}
$$

as Evs of A w.r.t. the evs λ_{1}, λ_{2}, respectively. We note that $S=\left(\begin{array}{cc}1 & 1 \\ -1-i & -1+i\end{array}\right)$ diagonalizes A. Since

$$
\begin{aligned}
S^{-1} A S & =\left(\begin{array}{cc}
\frac{-1+i}{2 i} & -\frac{1}{2 i} \\
\frac{1+i}{2 i} & \frac{1}{2 i}
\end{array}\right)\left(\begin{array}{cc}
2 & -1 \\
2 & 4
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1-i & -1+i
\end{array}\right) \\
& =\left(\begin{array}{cc}
3+i & 0 \\
0 & 3-i
\end{array}\right) \\
& =\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) \\
& =D
\end{aligned}
$$

The Column vectors of S form an eigenbasis for A and the diagonal entries of D are the associated evs.
Q. What are the evs and EVs of the $n \times n$ identity matrix I_{n} ?

Is there an eigenbasis for I_{n} ?
Which matrix diagonalizes I_{n} ?

This is in some sense a silly and yet a conceptually trick question.
Example 10. Find the eigenspace of $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$.
The evs are given by 0 and 1 with algebraic multiplicity 1 and 2 , respectively. To find EV consider

$$
\begin{aligned}
X_{1} & =\operatorname{ker}(A-1 I) \\
& =\operatorname{ker}\left(\begin{array}{ccc}
0 & 1 & 1 \\
0 & -1 & 1 \\
0 & 0 & 0
\end{array}\right) \\
& =\operatorname{ker}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
& =\operatorname{sp}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

where $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$ is the reduced row echelon form of the matrix $\left(\begin{array}{ccc}0 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 0\end{array}\right)$. The calculation:

$$
\begin{aligned}
& \left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \\
& \Longrightarrow\left(\begin{array}{l}
x_{2} \\
x_{3} \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Above calculation shows that $x_{2}=x_{3}=0$. Thus we can take any nonzero value as x_{1} to obtain an EV of A w.r.t. the ev 1. For convenience we take $x_{1}=1$ to obtain $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ as an EV. Likewise $X_{2}=\operatorname{ker} A=\mathrm{sp}\left(\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right)$. Thus we are able to find only two linearly independent EVs. Hence we won't have an eigenbasis here, equivalently we cannot find S to diagonalize A.

3.3 Geometric multiplicity of ev

$$
\begin{aligned}
\operatorname{gemm}(\lambda) & =\operatorname{dim}\left(\operatorname{ker}\left(A-\lambda I_{n}\right)\right) \\
& =\operatorname{nullity}\left(A-\lambda I_{n}\right) \\
& =n-\operatorname{rank}\left(A-\lambda I_{n}\right)
\end{aligned}
$$

In previous example

$$
\operatorname{gemm}(1)=\operatorname{dim}\left(\operatorname{ker}\left(A-\lambda I_{n}\right)\right)=\operatorname{dim}\left\langle\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\rangle=1 \neq \operatorname{alm} u(1)=2
$$

Theorem 11. A matrix A is orthogonally diagonalizable ($D=Q^{-1} A Q \equiv Q^{t} A Q$) iff A is symmetric $\left(A=A^{t}\right)$.

3.4 Spectral decomposition

Let A be a real symmetric $n \times n$ matrix with evs $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ and corresponding orthonormal EVs $v_{1}, v_{2} \ldots, v_{n}$; then

$$
\begin{aligned}
A & =\left(\begin{array}{ccc}
\vdots & \vdots & \vdots \\
v_{1} & v_{2} & v_{3} \\
\vdots & \vdots & \vdots
\end{array}\right)\left(\begin{array}{cccc}
\lambda_{1} & & 0 & \\
& \ddots & & \\
0 & & \lambda_{n}
\end{array}\right)\left(\begin{array}{cccc}
\ldots & v_{1} & \ldots \\
\ldots & v_{2} & \ldots \\
& \vdots & \\
\ldots & v_{n} & \ldots
\end{array}\right) \\
& =Q D Q^{t} .
\end{aligned}
$$

This concludes the life and theory of a matrix in FM112.

