7. Definition (Linear transformations):

A function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called a linear transformation if $\exists A \in \mathbb{M}_{m \times n}(\mathbb{R})$ such that $T(\mathbf{x})=\mathbf{A x}, \forall \mathbf{x} \in \mathbb{R}^{\mathbf{n}}$.
eg. The rotation matrix $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ is a linear transformation which rotates a vector in \mathbb{R}^{2} by θ.
Ques: Given $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, how do we find A ?
Ans: $A=\left(\begin{array}{cccc}\mid & \mid & & \mid \\ T\left(\mathbf{e}_{1}\right) & T\left(\mathbf{e}_{2}\right) & \cdot & T\left(\mathbf{e}_{\mathbf{n}}\right) \\ \mid & \mid & & \mid\end{array}\right)$ where $\mathbf{e}_{\mathbf{i}}$ is the $i^{\text {th }}$ standard basis element of \mathbb{R}^{n}.

A square matrix is invertible if its linear transformation is invertible.

Theorem: A $n \times n$ matrix A is invertible $\Longleftrightarrow \operatorname{rref}(A)=I_{n} \equiv \operatorname{rank}(A)=n$.

Finding inverse of a matrix: $A \in \mathbb{M}_{n \times n}(\mathbb{R})$. In order to find A^{-1}, form the augmented matrix $\tilde{A}=\left(\begin{array}{lll}A & \mid & I_{n}\end{array}\right)$ and compute $\operatorname{rref}(\tilde{A})$.

- If $\operatorname{rref}(\tilde{A})$ is of the form $\left(\begin{array}{l|l}I_{n} & \mid B\end{array}\right)$, then $A^{-1}=B$.
- If $\operatorname{rref}(\tilde{A})$ is of another form, then A is not invertible.
$(A B)^{-1}=B^{-1} A^{-1}$.

8. Definition (Image or range of a matrix/linear transformation):
$\operatorname{Im}(A)=\operatorname{Im}(T)$ is the span of the column vectors of A.
Q) Find a basis of the image of $A=\left(\begin{array}{ccccc}1 & 2 & 2 & -5 & 6 \\ -1 & -2 & -1 & 1 & -1 \\ 4 & 8 & 5 & -8 & 9 \\ 3 & 6 & 1 & 5 & -7\end{array}\right)=\left(\begin{array}{ccccc}\mid & \mid & \mid & \mid & \mid \\ \mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{a}_{3} & \mathbf{a}_{4} & \mathbf{a}_{5} \\ \mid & \mid & \mid & \mid & \mid\end{array}\right)$ and determine $\operatorname{dim}(\operatorname{Im}(A))$.

Ans) To find the basis of $\operatorname{Im}(A)$, we need to identify the redundant columns of A from amongst all the column vectors of A. By inspection of A, it will be hard to tell which of the columns of A are redundant (linearly dependent on the others). So we will transform A to $B=\operatorname{rref}(A)$.

$$
B=\operatorname{rref}(A)=\left(\begin{array}{ccccc}
1 & 2 & 0 & 3 & -4 \\
0 & 0 & 1 & -4 & 5 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{ccccc}
\mid & \mid & \mid & \mid & \mid \\
\mathbf{b}_{\mathbf{1}} & \mathbf{b}_{\mathbf{2}} & \mathbf{b}_{3} & \mathbf{b}_{\mathbf{4}} & \mathbf{b}_{\mathbf{5}} \\
\mid & \mid & \mid & \mid & \mid
\end{array}\right)
$$

The redundant columns of B correspond to the redundant columns of A. The redundant columns of B are also easy to spot: They are the columns that do not contain a leading 1, namely, $\mathbf{b}_{2}=2 \mathbf{b}_{1}, \mathbf{b}_{4}=3 \mathbf{b}_{1}-4 \mathbf{b}_{3}$, and $\mathbf{b}_{5}=-4 \mathbf{b}_{\mathbf{1}}+5 \mathbf{b}_{3}$. Thus the redundant columns of A are $\mathbf{a}_{2}=2 \mathbf{a}_{1}, \mathbf{a}_{4}=3 \mathbf{a}_{1}-4 \mathbf{a}_{3}$, and $\mathbf{a}_{5}=-4 \mathbf{a}_{1}+5 \mathbf{a}_{3}$. And the non-redundant columns of A are \mathbf{a}_{1} and \mathbf{a}_{3}, they form a basis of image of A. Therefore, a basis of image of A is

$$
\left(\begin{array}{c}
1 \\
-1 \\
4 \\
3
\end{array}\right),\left(\begin{array}{c}
2 \\
-1 \\
5 \\
1
\end{array}\right)
$$

$\operatorname{dim}(\operatorname{Im}(A))=2$.
9. Definition (Kernel of T (or equivalently the null space of $A, \operatorname{Null(A)}$)): The set of all $x \in \mathbb{R}^{n}$ s.t. $T(\mathbf{x})=A \mathbf{x}=\mathbf{0}$.
Q) Find a basis of the kernel of $\mathrm{A}($ equivalently, $\operatorname{Null}(A))$ and determine $\operatorname{dim}(\operatorname{Ker}(A))=\operatorname{dim}(\operatorname{null}(A))$.

Ans) Most importantly $\operatorname{Ker}(A)=\operatorname{Ker}(\operatorname{rref}(A))=\operatorname{Ker}(B)$. So we might as well solve for $\mathbf{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)$ s.t. $B \mathbf{x}=\mathbf{0}$. This is done by considering the augmented matrix $\tilde{B}=\left(\begin{array}{lll}B & \mid & \mathbf{0}\end{array}\right)$ from which we have the following:

$$
\begin{aligned}
& x_{1}+2 x_{2}+0 x_{3}+3 x_{4}-4 x_{5}=0 \\
& 0 x_{1}+0 x_{2}+x_{3}-4 x_{4}+5 x_{5}=0 \\
& \quad \text { or equivalently, } \\
& x_{1}=-2 x_{2}-3 x_{4}+4 x_{5} \\
& x_{3}=4 x_{4}-5 x_{5}
\end{aligned}
$$

whence $x_{2}=\alpha, x_{4}=\beta, x_{5}=\gamma$ are set arbitrarily. Therefore,

$$
\mathbf{x}=\left(\begin{array}{c}
-2 \alpha-3 \beta+4 \gamma \\
\alpha \\
4 \beta-5 \gamma \\
\beta \\
\gamma
\end{array}\right)=\left(\begin{array}{ccc}
-2 \alpha & -3 \beta & +4 \gamma \\
\alpha & & \\
& 4 \beta & -5 \gamma \\
& \beta & \\
& & \gamma
\end{array}\right)=\alpha\left(\begin{array}{c}
-2 \\
1 \\
0 \\
0 \\
0
\end{array}\right)+\beta\left(\begin{array}{c}
-3 \\
0 \\
4 \\
1 \\
0
\end{array}\right)+\gamma\left(\begin{array}{c}
4 \\
0 \\
-5 \\
0 \\
1
\end{array}\right) .
$$

The $\operatorname{Null}(A)$ is spanned by these basis vectors $\left(\begin{array}{c}-2 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{c}-3 \\ 0 \\ 4 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}4 \\ 0 \\ -5 \\ 0 \\ 1\end{array}\right)$ and $\operatorname{dim}(\operatorname{Null}(A))=3$.

Exercise problem: Find the basis for the null space of the matrix $A=\left(\begin{array}{cccc}1 & -1 & 1 & 2 \\ 2 & 1 & 3 & 2 \\ 1 & 5 & 3 & -2\end{array}\right)$ and determine its dimension?
Answer: $\left(\begin{array}{c}-4 / 3 \\ -1 / 3 \\ 1 \\ 0\end{array}\right), \quad\left(\begin{array}{c}-4 / 3 \\ 2 / 3 \\ 0 \\ 1\end{array}\right)$ and the dimension of null space of A is 2 .
10. Theorem: $A \in \mathbb{M}_{m \times n}(\mathbb{R})$. Then $\operatorname{Ker}(A)=\{0\} \Longleftrightarrow \operatorname{rank}(A)=n$.

For a square matrix the statement is true when A is invertible
(cf. remark under point 7 above: When A is invertible, $\operatorname{rref}(A)=I_{n} \Longrightarrow$ no. of pivots $=\mathrm{n}=\operatorname{rank}(\mathrm{A})$ by def. Further, $A \mathbf{x}=0$ can be solved by considering the augmented matrix $\left.\operatorname{rref}(A \mid \mathbf{0})=\left(I_{n} \mid \mathbf{0}\right)\right)$ which gives us $x_{1}=0, x_{2}=0, x_{3}=0$. which gives $\operatorname{Ker}(A)=\{\mathbf{0}\}$. The converse is obvious.
11. Theorem (Rank-nullity theorem): For any $m \times n$ matrix A, the following is known as the fundamental theorem of linear algebra:

$$
\begin{gathered}
\operatorname{dim}(\operatorname{Null}(A))+\operatorname{dim}(\operatorname{Im}(A))=n \\
\text { or equivalently, } \\
(\text { nullity of } A)+(\text { rank of } A)=n
\end{gathered}
$$

