- **1.** Is the set $\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \end{bmatrix} \right\}$ a linearly independent subset of \mathbb{R}^2 .
- **2.** Determine whether the given vectors are linearly independent or linearly dependent in \mathbb{R}^3

$$\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3\\\end{bmatrix}, \begin{bmatrix} 1\\3\\6 \end{bmatrix}$$

3. Check whether the following vectors forms a basis of \mathbb{R}^2 or not.

$$\left\{ \begin{bmatrix} 1\\2 \end{bmatrix} \begin{bmatrix} 1\\4 \end{bmatrix} \right\}$$

and if it is basis of \mathbb{R}^2 then write for any arbitrary vector $\begin{bmatrix} a \\ b \end{bmatrix}$ of \mathbb{R}^2 in the linear combination of $\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} \right\}$.

4. Suppose $\{v_1, v_2, v_3, v_4\}$ points lies on the line in \mathbb{R}^2 then show that set $\{v_2 - v_1, v_4 - v_3\}$ is linearly dependent subset of \mathbb{R}^2 .

5. let

$$W = \{(x, y, z) | x + y + z = 0\}$$

show that W is a vector space over field \mathbb{R} and find its basis and dimension.