$\begin{array}{l} \mbox{Definition and properties of } MA(\infty) \\ \mbox{AR(1) process is complementary to } MA(\infty) \mbox{ process } \\ \mbox{Higher order AR models & Yule Walker eqs.} \end{array}$

Time Series Models: Auto-Regressive model

Thapar Institute of Engineering & Technology, Patiala

Moving Average model of order ∞

 $MA(\infty)$:

Let ε_t be white noise. The $MA(\infty)$ model is defined as follows: $Y_t = \mu + \sum_{j \ge 0} \psi_j \varepsilon_{t-j}; \quad \mu, \psi_j$ are constants.

 $MA(\infty)$ is <u>stationary</u> if $\sum_{j\geq 0} |\psi_j| < \infty$ because all statistical moments $\mu, \gamma_0, \gamma_1, \dots$ are finite and constant if the coefficients ψ_j are absolutely summable.

Further, $MA(\infty)$ is ergodic if $\sum_{j>0} |\psi_j| < \infty$!

Definition and properties of $MA(\infty)$ AR(1) process is complementary to $MA(\infty)$ process Higher order AR models & Yule Walker eqs.

AR(1) model

<u>Definition</u>: $Y_t = c + \phi Y_{t-1} + \varepsilon_t$ where ϕ is a real constant. **Note**: When $|\phi| \ge 1$, no stationary AR model exists! (ignore this case!)

When $|\phi| < 1$, we will show AR(1) is complementary to $MA(\infty)$! The stable solution to AR(1) defined above is obtained from

$$Y_t = w_t + \phi w_{t-1} + \phi^2 w_{t-2} + \dots; \quad w_t = c + \varepsilon_t$$
$$= \frac{c}{1 - \phi} + \varepsilon_t + \phi \varepsilon_{t-1} + \phi^2 \varepsilon_{t-2} + \dots$$

which is $MA(\infty)$ with $\mu = \frac{c}{1-\phi}$ and $\psi_j = \phi^j$. Also, $\sum_{j\geq 0} |\psi_j| = \sum_{j\geq 0} |\phi|^j = \frac{1}{1-\phi}\infty$ when $|\phi < 1|$. $\begin{array}{l} \mbox{Definition and properties of } MA(\infty) \\ \mbox{AR(1) process is complementary to } MA(\infty) \mbox{ process } \\ \mbox{Higher order AR models & Yule Walker eqs.} \end{array}$

Auto-covariances of AR(1)

Exercise: Use the $MA(\infty)$ model to compute the following.

•
$$\gamma_0 = E(Y_t - \mu)^2 = \frac{\sigma^2}{1 - \phi^2}$$

• $\gamma_j = E(Y_t - \mu)(Y_{t-j} - \mu) = \frac{\phi^j}{1 - \phi^2}\sigma^2$
• $\rho_j = \frac{\gamma_j}{\gamma_0} = \phi^j$

Definition and properties of $MA(\infty)$ AR(1) process is complementary to $MA(\infty)$ process Higher order AR models & Yule Walker eqs.

AR(p) model

$$\begin{aligned} Y_t &= c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \ldots + \phi_p Y_{t-p} + \varepsilon_t \text{ where } \\ \mu &= \frac{c}{1 - \phi_1 - \phi_2 - \ldots - \phi_p}, \text{ and } \\ \gamma_0 &= \phi_1 \gamma_1 + \phi_2 \gamma_2 + \ldots + \phi_p \gamma_p \text{ and } \\ \gamma_j &= \sum_{m \geq 1}^p \phi_m \gamma_{j-m} \quad \forall j > 1 \text{ along with } \gamma_j = \gamma_{-j}. \end{aligned}$$

Yule Walker model

$$\rho_j = \sum_{m \ge 1}^{p} \phi_m \rho_{j-m}; \quad j = 1, 2, \dots$$
 are the Yule Walker equations.

We will do a laboratory experiment using the Yule Walker model to forecast employment growth statistics! https://235d9ee8-8e8c-4d7b-a842-264ad94cf102.filesusr.com/ugd/334434_25cd85ba56c24e8fbd245a9443e21d27.pdf Definition and properties of $MA(\infty)$ AR(1) process is complementary to $MA(\infty)$ process Higher order AR models & Yule Walker eqs.

MA is complementary to AR

Likewise, MA(1) is an $AR(\infty)$ process!

ARMA(p,q)

$$\begin{aligned} \mathbf{Y}_t &= \\ \mathbf{c} + \phi_1 \mathbf{Y}_{t-1} + \phi_2 \mathbf{Y}_{t-2} + \ldots + \phi_p \mathbf{Y}_{t-p} + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \ldots + \theta_q \varepsilon_{t-q}. \end{aligned}$$

Practise problem

Ques: Consider the MA(2) process $Y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$ with $\theta_1 = 2/5$ and *theta*₂ = -1/5. Calculate all the autocorrelation functions. **Soln.**: $\rho_0 = 1, \rho_1 = 4/15, \rho_2 = -1/6$ and $\rho_i = 0 \quad \forall j > 2$.