Tutorial 5 Residue calculus, principal value integrals \& conformal mappings

1. Evaluate $I=\int_{-\infty}^{\infty} \frac{\cos k x}{(x+b)^{2}+a^{2}}, k>0, a>0, b \in \mathbb{R}$.
2. Evaluate $I=\int_{0}^{2 \pi} \frac{d \theta}{A+B \sin \theta}$, where $A^{2}>B^{2}, A>0$. Hence find $I=\int_{0}^{2 \pi} \frac{d \theta}{A+B \cos \theta}$ without doing any calculations.
3. Evaluate $I=\int_{-\infty}^{\infty} \frac{e^{p x}}{1+e^{x}} d x$ for $0<\operatorname{Re}\{p\}<1$.
4. Suppose that on a contour C_{ϵ} that subtends an angle ϕ at the point z_{0}, we have $\left(z-z_{0}\right) f(z) \rightarrow 0$ uniformly as $\epsilon \rightarrow 0$, then show that $\lim _{\epsilon \rightarrow 0} \int_{C_{\epsilon}} f(z) d z=0$. Further, if $f(z)$ has a simple pole at z_{0} with $\operatorname{Res}\left(f(z) ; z_{0}\right)=c_{-1}$, then for the contour C_{ϵ}, show that $\lim _{\epsilon \rightarrow 0} \int_{C_{\epsilon}} f(z) d z=i \phi c_{-1}$.
5. Show that $\int_{-\infty}^{\infty} \frac{\sin a x}{x} d x=\operatorname{sgn}(a) \pi$ by evaluating the principal value integral $f_{-\infty}^{\infty} \frac{e^{i a x}}{x} d x, a \in \mathbb{R}$.
6. Show that $w=f(z)=z^{2}$ maps horizontal and vertical grid lines to mutually orthogonal parabolas. (The conformal map preserves the right angles between the grid lines.)
7. Find a map that inverts a unit circle, i.e. maps the inside of the circle to the outside. Will the arrows on the curves be reversed?
