
Recurrence Relations

1 Infinite Sequences

An infinite sequence is a function from the set of positive integers to the set of
real numbers or to the set of complex numbers.

Example 1.1. The game of Hanoi Tower is to play with a set of disks of
graduated size with holes in their centers and a playing board having three spokes
for holding the disks.

A B C

The object of the game is to transfer all the disks from spoke A to spoke C by
moving one disk at a time without placing a larger disk on top of a smaller one.
What is the minimal number of moves required when there are n disks?
Solution. Let an be the minimum number of moves to transfer n disks from one
spoke to another. In order to move n disks from spoke A to spoke C, one must
move the first n° 1 disks from spoke A to spoke B by an°1

moves, then move
the last (also the largest) disk from spoke A to spoke C by one move, and then
remove the n ° 1 disks again from spoke B to spoke C by an°1

moves. Thus
the total number of moves should be

an = an°1

+ 1 + an°1

= 2an°1

+ 1.

This means that the sequence {an | n ∏ 1} satisfies the recurrence relation
Ω

an = 2an°1

+ 1, n ∏ 1
a

1

= 1.
(1)
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Applying the recurrence relation again and again, we have

a
1

= 2a
0

+ 1

a
2

= 2a
1

+ 1 = 2(2a
0

+ 1) + 1

= 22a
0

+ 2 + 1

a
3

= 2a
2

+ 1 = 2(22a
0

+ 2 + 1) + 1

= 23a
0

+ 22 + 2 + 1

a
4

= 2a
3

+ 1 = 2(23a
0

+ 22 + 2 + 1) + 1

= 24a
0

+ 23 + 22 + 2 + 1
...

an = 2na
0

+ 2n°1 + 2n°2 + · · · + 2 + 1

= 2na
0

+ 2n ° 1.

Let a
0

= 0. The general term is given by

an = 2n ° 1, n ∏ 1.

Given a recurrence relation for a sequence with initial conditions. Solving the
recurrence relation means to find a formula to express the general term an of the
sequence.

2 Homogeneous Recurrence Relations

Any recurrence relation of the form

xn = axn°1

+ bxn°2

(2)

is called a second order homogeneous linear recurrence relation.
Let xn = sn and xn = tn be two solutions, i.e.,

sn = asn°1

+ bsn°2

and tn = atn°1

+ btn°2

.

Then for constants c
1

and c
2

c
1

sn + c
2

tn = c
1

(asn°1

+ bsn°2

) + c
2

(atn°1

+ btn°2

)

= a(c
1

sn°1

+ c
2

tn°1

) + b(c
1

sn°2

+ c
2

tn°2

).

This means that xn = c
1

sn + c
2

tn is a solution of (2).
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Theorem 2.1. Any linear combination of solutions of a homogeneous re-

currence linear relation is also a solution.

In solving the first order homogeneous recurrence linear relation

xn = axn°1

,

it is clear that the general solution is

xn = anx
0

.

This means that xn = an is a solution. This suggests that, for the second order
homogeneous recurrence linear relation (2), we may have the solutions of the
form

xn = rn.

Indeed, put xn = rn into (2). We have

rn = arn°1 + brn°2 or rn°2(r2 ° ar ° b) = 0.

Thus either r = 0 or
r2 ° ar ° b = 0. (3)

The equation (3) is called the characteristic equation of (2).

Theorem 2.2. If the characteristic equation (3) has two distinct roots r
1

and r
2

, then the general solution for (2) is given by

xn = c
1

rn
1

+ c
2

rn
2

.

If the characteristic equation (3) has only one root r, then the general so-

lution for (2) is given by

xn = c
1

rn + c
2

nrn.

Proof. When the characteristic equation (3) has two distinct roots r
1

and r
2

it
is clear that both

xn = rn
1

and xn = rn
2

are solutions of (2), so are their linear combinations.

Recall that r = a±
p

a2

+4b
2

. Now assume that (2) has only one root r. Then

a2 + 4b = 0 and r = a/2.
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Thus

b = °a2

4
and r =

a

2
.

We verify that xn = nrn is a solution of (2). In fact,

axn°1

+ bxn°2

= a(n° 1)
≥a

2

¥n°1

+

µ
°a2

4

∂
(n° 2)

≥a

2

¥n°2

= [2(n° 1)° (n° 2)]
≥a

2

¥n

= n
≥a

2

¥n

= xn.

Remark. There is heuristic method to explain why xn = nrn is a solution
when the two roots are the same. If two roots r

1

and r
2

are distinct but very
close to each other, then rn

1

° rn
2

is a solution. So is (rn
1

° rn
2

)/(r
1

° r
2

). It
follows that the limit

lim
r
2

!r
1

rn
1

° rn
2

r
1

° r
2

= nrn°1

1

would be a solution. Thus its multiple xn = r
1

(nrn°1

1

) = nrn
1

by the constant
r
1

is also a solution. Please note that this is not a mathematical proof, but a
mathematical idea.

Example 2.1. Find a general formula for the Fibonacci sequence
8
<

:

fn = fn°1

+ fn°2

f
0

= 0
f

1

= 1

Solution. The characteristic equation r2 = r + 1 has two distinct roots

r
1

=
1 +

p
5

2
and r

2

=
1°

p
5

2
.

The general solution is given by

fn = c
1

√
1 +

p
5

2

!n

+ c
2

√
1°

p
5

2

!n

.
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Set (
0 = c

1

+ c
2

1 = c
1

≥
1+

p
5

2

¥
+ c

2

≥
1°
p

5

2

¥
.

We have c
1

= °c
2

= 1p
5

. Thus

fn =
1p
5

√
1 +

p
5

2

!n

° 1p
5

√
1°

p
5

2

!n

, n ∏ 0.

Remark. The Fibonacci sequence fn is an integer sequence, but it “looks like”
a sequence of irrational numbers from its general formula above.

Example 2.2. Find the solution for the recurrence relation
8
<

:

xn = 6xn°1

° 9xn°2

x
0

= 2
x

1

= 3

Solution. The characteristic equation

r2 ° 6r + 9 = 0 () (r ° 3)2 = 0

has only one root r = 3. Then the general solution is

xn = c
1

3n + c
2

n3n.

The initial conditions x
0

= 2 and x
1

= 3 imply that c
1

= 2 and c
2

= °1. Thus
the solution is

xn = 2 · 3n ° n · 3n = (2° n)3n, n ∏ 0.

Example 2.3. Find the solution for the recurrence relation
8
<

:

xn = 2xn°1

° 5xn°2

, n ∏ 2
x

0

= 1
x

1

= 5

Solution. The characteristic equation

r2 ° 2r + 5 = 0 () (x° 1° 2i)(x° 1 + 2i) = 0
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has two distinct complex roots r
1

= 1+2i and r
2

= 1°2i. The initial conditions
imply that

c
1

+ c
2

= 1 c
1

(1 + 2i) + c
2

(1° 2i) = 5.

So c
1

= 1°2i
2

and c
2

= 1+2i
2

. Thus the solutions is

xn =
1° 2i

2
· (1 + 2i)n +

1 + 2i

2
· (1° 2i)n

=
5

2
(1 + 2i)n+1 +

5

2
(1° 2i)n+1, n ∏ 0.

Remark. The sequence is obviously a real sequence. However, its general
formula involves complex numbers.

Example 2.4. Two persons A and B gamble dollars on the toss of a fair coin.
A has $70 and B has $30. In each play either A wins $1 from B or loss $1 to
B. The game is played without stop until one wins all the money of the other or
goes forever. Find the probabilities of the following three possibilities:

(a) A wins all the money of B.

(b) A loss all his money to B.

(c) The game continues forever.

Solution. Either A or B can keep track of the game simply by counting their
own money. Their position n (number of dollars) can be one of the numbers
0, 1, 2, . . . , 100. Let

pn = probability that A reaches 100 at position n.

After one toss, A enters into either position n + 1 or position n ° 1. The new
probability that A reaches 100 is either pn+1

or pn°1

. Since the probability of A
moving to position n+1 or n° 1 from n is 1

2

. We obtain the recurrence relation
8
<

:

pn = 1

2

pn+1

+ 1

2

pn°1

p
0

= 0
p

100

= 1

First Method: The characteristic equation

r2 ° 2r + 1 = 0.
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has only one root r = 1. The general solutions is

pn = c
1

+ c
2

n.

Applying the boundary conditions p
0

= 0 and p
100

= 1, we have

c
1

= 0 and c
2

=
1

100
.

Thus
pn =

n

100
, 0 ∑ n ∑ 100.

Of course, pn = n
100

for n > 100 is nonsense to the original problem. The
probabilities for (a), (b), and (c) are 70%, 30%, and 0, respectively.

Second Method: The recurrence relation pn = 1

2

pn+1

+ 1

2

pn°1

can be written
as

pn+1

° pn = pn ° pn°1

.

Then
pn+1

° pn = pn ° pn°1

= · · · = p
1

° p
0

.

Since p
0

= 0, we have pn = pn°1

+ p
1

. Applying the recurrence relation again
and again, we obtain

pn = p
0

+ np
1

.

Applying the conditions p
0

= 0 and p
100

= 1, we have pn = n
100

.

3 Higher Order Homogeneous Recurrence Relations

For a higher order homogeneous recurrence relation

xn+k = a
1

xn+k°1

+ a
2

xn+k°2

+ · · · + an°kxn, n ∏ 0 (4)

we also have the characteristic equation

tk = a
1

tk°1 + a
2

tk°1 + · · · + an°k+1

t + an°k (5)

or
tk ° a

1

tk°1 ° a
2

tk°1 ° · · ·° an°k+1

t° an°k = 0.
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Theorem 3.1. For the recurrence relation (4), if its characteristic equation

(5) has distinct roots r
1

, r
2

, . . . , rk, then the general solution for (4) is

xn = c
1

rn
1

+ c
2

rn
2

+ · · · + ckr
n
k

where c
1

, c
2

, . . . , ck are arbitrary constants. If the characteristic equation

has repeated roots r
1

, r
2

, . . . , rs with multiplicities m
1

,m
2

, . . . , ms respec-

tively, then the general solution of (4) is a linear combination of the so-

lutions

rn
1

, nrn
1

, . . . , nm
1

°1rn
1

;
rn
2

, nrn
2

, . . . , nm
2

°1rn
2

;
. . . ;

rn
s , nrn

s , . . . , nms°1rn
s .

Example 3.1. Find an explicit formula for the sequence given by the recurrence
relation Ω

xn = 15xn°2

° 10xn°3

° 60xn°4

+ 72xn°5

x
0

= 1, x
1

= 6, x
2

= 9, x
3

= °110, x
4

= °45

Solution. The characteristic equation

r5 = 15r3 ° 10r2 ° 60r + 72

can be simplified as
(r ° 2)3(r + 3)2 = 0.

There are roots r
1

= 2 with multiplicity 3 and r
2

= °3 with multiplicity 2. The
general solution is given by

xn = c
1

2n + c
2

n2n + c
3

n22n + c
4

(°3)n + c
5

n(°3)n.

The initial condition means that8
>>>>><

>>>>>:

c
1

+c
4

= 1
2c

1

+2c
2

+2c
3

°3c
4

°3c
5

= 1
4c

1

+8c
2

+16c
3

+9c
4

+18c
5

= 1
8c

1

+24c
2

+72c
3

°27c
4

°81c
5

= 1
16c

1

+64c
2

+256c
3

+81c
4

+324c
5

= 1

Solving the linear system we have

c
1

= 2, c
2

= 3, c
3

= °2, c
4

= °1, c
5

= 1.
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4 Non-homogeneous Equations

A recurrence relation of the form

xn = axn°1

+ bxn°2

+ f (n) (6)

is called a non-homogeneous recurrence relation.
Let x

(s)
n be a solution of (6), called a special solution. Then the general

solution for (6) is
xn = x(s)

n + x(h)

n , (7)

where x
(h)

n is the general solution for the corresponding homogeneous recurrence
relation

xn = axn°1

+ bxn°2

. (8)

Theorem 4.1. Let f (n) = crn
in (6). Let r

1

and r
2

be the roots of the

characteristic equation

t2 = at + b. (9)

(a) If r 6= r
1

, r 6= r
2

, then x
(s)
n = Arn

;

(b) If r = r
1

, r
1

6= r
2

, then x
(s)
n = Anrn

;

(c) If r = r
1

= r
2

, then x
(s)
n = An2rn

;

where A is a constant to be determined in all cases.

Proof. We assume r 6= 0. Otherwise the recurrence relation is homogeneous.
(a) Put xn = Arn into (6). We have

Arn = aArn°1 + bArn°2 + crn.

Thus
A(r2 ° ar ° b) = cr2.

Since r is not a root of the characteristic equation (9), then
r2 ° ar ° b 6= 0. Hence

A =
cr2

r2 ° ar ° b
.
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(b) Since r = r
1

6= r
2

, it is clear that xn = nrn is not a solution for its
corresponding homogeneous equation (8), i.e.,

nr2 ° a(n° 1)r ° b(n° 2) = n(r2 ° ar ° b) + ar + 2b

= ar + 2b 6= 0.

Put xn = Anrn into (6). We have

Anrn = aA(n° 1)rn°1 + bA(n° 2)rn°2 + crn,

Thus A(nr2 ° a(n° 1)r ° b(n° 2)) = cr2. Therefore

A =
cr2

ar + 2b
.

(c) Since r = r
1

= r
2

, then a2 + 4b = 0 (discriminant of r2 ° ar ° b = 0
must be zero), r = a/2, and xn = n2rn is not a solution of the corresponding
homogeneous equation (8), i.e.,

n2r2 ° a(n° 1)2r ° b(n° 2)2

= n2(r2 ° ar ° b) + 2n(ar + 2b)° ar ° 4b

= °ar ° 4b 6= 0.

Put xn = An2rn into (6). We have

Arn°2

°
n2r2 ° a(n° 1)2r ° b(n° 2)2

¢
= crn.

Thus

A = ° cr2

ar + 4b
.

Example 4.1. Consider the non-homogeneous equation
8
<

:

xn = 3xn°1

+ 10xn°2

+ 7 · 5n

x
0

= 4
x

1

= 3

Solution. The characteristic equation is

t2 ° 3t° 10 = 0 () (t° 5)(t + 2) = 0.

10



We have roots r
1

= 5, r
2

= °2. Since r = 5, then r = r
1

and r 6= r
2

.
A special solution can be of the type xn = An5n. Put the solution into the
non-homogeneous relation. We have

An5n = 3A(n° 1)5n°1 + 10A(n° 2)5n°2 + 7 · 5n

Dividing both sides by 5n°2,

An52 = 3A(n° 1)5 + 10A(n° 2) + 7 · 52.

Thus
°35A + 7 · 25 = 0 =) A = 5.

So
xn = n5n+1.

The general solution is

xn = n5n+1 + c
1

5n + c
2

(°2)n.

The initial condition implies c
1

= °2 and c
2

= 6. Therefore

xn = n5n+1 ° 2 · 5n + 6(°2)n.

Example 4.2. Consider the non-homogeneous equation
8
<

:

xn = 10xn°1

° 25xn°2

+ 8 · 5n

x
0

= 6
x

1

= 10

Solution. The characteristic equation is

t2 ° 10t + 25 = 0 () (t° 5)2 = 0.

We have roots r
1

= r
2

= 5, then r = r
1

= r
2

= 5. A special solution can be of
the type xn = An25n. Put the solution into the non-homogeneous relation. We
have

An25n = 10A(n° 1)25n°1 ° 25A(n° 2)25n°2 + 8 · 5n

Dividing both sides by 5n°2,

An252 = 10A(n° 1)25° 25A(n° 2)2 + 8 · 52.
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Since An252 = 10An25° 25n2, we have

10A(°2n + 1)5° 25A(°4n + 4) + 8 · 52 = 0 =) A = 4.

So a nonhomogeneous solution is

xn = 4n25n.

The general solution is

xn = 4n5n + c
1

5n + c
2

n5n.

The initial condition implies c
1

= 6 and c
2

= °8. Therefore

xn = (4n2 ° 8n + 6)5n.

5 Divide-and-Conquer Method

Assume we have a job of size n to be done. If the size n is large and the job is
complicated, we may divide the job into smaller jobs of the same type and of the
same size, then conquer the smaller problems and use the results to construct
a solution for the original problem of size n. This is the essential idea of the
so-called Divide-and-Conquer method.

Example 5.1. Assume there are n (= 2k) student files, indexed by the student
ID numbers as

A = {a
1

, a
2

, . . . , an}.
Given a particular file a 2 A. What is the number of comparisons needed in
worst case to find the position of the file a?

Solution. Let xn denote the number of comparisons needed to find the position
of the file a in worst case. Then the answer depends on whether or not the files
are sorted.

Case I: The files in A are not sorted. Then the answer is at most n compar-
isons.

Case II: The files in A are sorted in the order a
1

< a
2

< · · · < an.

a
1

a
2

· · · an
2

°1

an
2

an
2

+1

· · · an°1

an
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We may compare the file a with an
2

. If a = an
2

, the job is done by one comparison.
If a < an

2

, consider the subset {a
1

, a
2

, . . . , an
2

}. If a > an
2

, consider the subset
{an

2

+1

, an
2

+2

, . . . , an}. Then the number of comparisons is at most xn
2

+ 1. We
thus obtain a recurrence relation

Ω
xn = xn

2

+ 1
x

1

= 1

Applying the recurrence relation again and again, we obtain

xn = xn
2

+ 1 = x n
2

2

+ 2 = x n
2

3

+ 3 = · · · = x n
2

k
+ k = x

1

+ k = k + 1.

Since n = 2k, we have k = log
2

n. Therefore

xn = log
2

n + 1.

Example 5.2. Let S = {a
1

, a
2

, . . . , an} Ω Z, where n = 2k and k ∏ 1. How
many number of comparisons are needed in worst case to find the minimum in
S? We assume that the numbers in S are not sorted.

Solution. The number of comparisons depends on the method we employed.
If all possible pairs of elements in S are compared, then the minimum will be
found, and the number of comparisons in worst case is

≥n

2

¥
=

n(n° 1)

2
= O(n2).

Of course this is not best possible.
There is another method to find a better solution. Let xn be the least number

of comparisons needed in worst case to find the minimum in S. Obviously,
x

1

= 0 and x
2

= 1. For n = 2k and k ∏ 1, we may divide S into two subsets

S
1

= {a
1

, a
2

, . . . , an
2

}, |S
1

| = n
2

,

S
2

= {an
2

+1

, an
2

+2

, . . . , an}, |S
2

| = n
2

.

It takes xn
2

comparisons to find the minimum m
1

for S
1

and the minimum m
2

for S
2

. Then compare m
1

with m
2

to determine the minimum in S. In this way
the total number of comparisons for S in worst case is 2xn

2

+ 1. We thus obtain
a recurrence relation Ω

xn = 2xn
2

+ 1
x

2

= 1
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Applying the recurrence relation again and again, we have

xn = 2
≥
2x n

2

2

+ 1
¥

+ 1 = 22x n
2

2

+ 2 + 1

= 22

≥
2x n

2

3

+ 1
¥

+ 2 + 1 = 23x n
2

3

+ 22 + 2 + 1

= · · · = 2k°1x n
2

k°1

+ 2k°2 + · · · + 2 + 1

= 2k°1 + · · · + 2 + 1 =
2k ° 1

2° 1
= n° 1 = O(n).

We hope that we understand the nature of divide-and-conquer method by the
above examples. In order to solve a problem of size n, if the size n is large and
the problem is complicated, we divide the problem into a smaller subproblems
of the same type and of the same size dn

be, where a, b 2 Z
+

, 1 ∑ a < n and
1 < b < n. Then we solve the a smaller subproblems and use the results
to construct a solution for the original problem of size n. We are especially
interested in the case where n = bk and b = 2.

Theorem 5.1 (Divide-and-Conquer Algorithm). Let f (n) denote the time

to solve a problem of size n. Assume that f (n) satisfies the following two

properties:

(a) The time to solve the initial problem of size n = 1 is a constant c ∏ 0.

(b) The time to break the given problem of size n into a smaller same

type subproblems, together with the time to construct a solution for

the original problem by using the solutions for the a subproblems, is a

function h(n);

Then the time complexity function f (n) is given by the recurrence relation

Ω
f (1) = c

f (n) = af (n
b ) + h(n), n = bk, k ∏ 1

Theorem 5.2. Let f : Z
+

°! R be a function satisfying the recurrence

relation

f (n) = af
≥n

b

¥
+ c, n = bk, k ∏ 1 (10)
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where a, b, c are positive integers, b ∏ 2. Then

f (n) =

(
f (1) + c logb n for a = 1

f (1)nlogb a + c
≥

nlogb a°1

a°1

¥
for a 6= 1

(11)

Proof. Applying the recurrence relation, we obtain

f (n) = af (n
b ) + c

af (n
b ) = a2f ( n

b2
) + ac

a2f ( n
b2

) = a3f ( n
b3

) + a2c
...

ak°2f ( n
bk°2

) = ak°1f ( n
bk°1

) + ak°2c

ak°1f ( n
bk°1

) = akf ( n
bk

) + ak°1c

Adding both sides of the above k equations and cancelling the like common
terms, we have

f (n) = akf
≥ n

bk

¥
+

°
c + ac + a2c + · · · + ak°1c

¢

= akf (1) + c
°
1 + a + a2 + · · · + ak°1

¢
.

Since n = bk, then k = logb n. Thus

ak = alogb n =
°
blogb a

¢
logb n

=
°
blogb n

¢
logb a

= nlogb a.

Therefore
f (n) = nlogb af (1) + c

°
1 + a + a2 + · · · + ak°1

¢
.

If a = 1, we have
f (n) = f (1) + c logb n.

If a 6= 1, we have

f (n) = akf (1) + c

µ
ak ° 1

a° 1

∂

= f (1)nlogb a + c

µ
nlogb a ° 1

a° 1

∂
.
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6 Growth of Functions

Let f and g be functions on the set P of positive integers. If there exist positive
constant C and integer N such that

|f (n)| ∑ C|g(n)| for all n ∏ N,

we say that f is of big-Oh of g, written as

f = O(g).

This means that f grows no faster than g. We say that f and g have the same
order if f = O(g) and g = O(f ). If f = O(g), but g 6= O(f ), then we say
that f is of lower order than g or g grows faster than f .

Example 6.1. In Example 5.1, the number of comparisons f (n) is a function
of integers n. In Case I, f (n) = O(n). In Case II, f (n) = O(log n).

In Example 5.2, the number of comparisons f (n) is a function of positive
integers n. For Solution I, f (n) = O(n2). For Solution II, f (n) = O(n).

Remark. f (n) = O(g(n)) if and only if there exists a constant C such that

lim
n!1

f (n)

g(n)
∑ C.

Problem Set 5

1. Find an explicit formula for each of the sequences defined by the recurrence
relations with initial conditions.

(a) xn = 5xn°1

+ 3, x
1

= 3.

(b) xn = 3xn°1

+ 5n, x
1

= 5.

(c) xn = 2xn°1

+ 15xn°2

, x
1

= 2, x
2

= 4.

(d) xn = 4xn°1

+ 5xn°2

, x
1

= 3, x
2

= 5.

(e) xn = 3xn°1

° 2xn°2

, x
0

= 2, x
1

= 4.

(f) xn = 6xn°1

° 9xn°2

, x
0

= 3, x
1

= 9.
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Solution. (a) Since xn = 5(5xn°2

+ 3) + 3 = 52xn°2

+ 5 · 3 + 3, then
xn = 5kxn°k + (5k°1 + · · · + 5 + 50) · 3 for 1 ∑ k ∑ n° 1. Thus

xn = (5n°1 + 5n°2 + · · · + 5 + 1)3 =
3(5n ° 1)

5° 1
.

(b) Let xn = A + Bn. Then A + Bn = 3(A + B(n° 1)) + 5n. Thus

(2A° 3B) + (2B + 5)n = 0.

Set 2A° 3B = 0 and 2B + 5 = 0; we have B = °5/2, A = °15/4. Hence
the general solution is given by

xn = °15

4
° 5n

2
+ 3nC

Applying x
1

= 5, we have C = 15/4. Therefore

xn = °15

4
° 5n

2
+

15 · 3n

4
.

(c) Set r2 = 2r + 15. Then (r + 3)(r ° 5) = 0. Thus r
1

= °3, r
2

= 5. Let
xn = (°3)nC

1

+ 5nC
2

. Then C
1

= °1/4, C
2

= 1/4. Thus

xn =
(°1)n+13n + 5n

4
.

(d) Set r2 = 4r + 5. Then (r + 1)(r ° 5) = 0. Thus r
1

= °1, r = 5. Let
xn = (°1)nC

1

+ 5nC
2

. We have C
1

= 13/3, C
2

= 4/15. Therefore

xn =
13(°1)n

3
+

4 · 5n

15
.

(e) Set r2 = 3r ° 2. Then r
1

= 1, r
2

= 2. Let xn = C
1

+ 2nC
2

. Then
C

1

= 0, C
2

= 2. Thus xn = 2n+1.

(f) Set r2 = 6r ° 9. Then r
1

= r
2

= 3. Let xn = 3nC
1

+ 3nnC
2

. Then
C

1

= 3, C
2

= 0. Therefore xn = 3n+1.

2. Find an explicit formula for each of the sequences defined by the non-
homogeneous recurrence relations with initial conditions.

17



(a) xn = 2xn°1

+ 15xn°2

+ 2n, x
1

= 2, x
2

= 4.

(b) xn = 4xn°1

+ 5xn°2

+ 3, x
1

= 3, x
2

= 5.

(c) xn = 3xn°1

° 2xn°2

+ 2n, x
0

= 2, x
1

= 4.

(d) xn = 6xn°1

° 9xn°2

+ 3n+2, x
0

= 3, x
1

= 9.

Solution. (a) Since r2 = 2r + 15, then r
1

= °3, r
2

= 5. So r
3

= 2 6= r
1

,
r
3

= 2 6= r
2

. Let xn = 2nA be a special solution. Then 2nA = 2 · 2n°1A +
15 · 2n°2A + 2n. Thus A = °4/15. Therefore the general solution is given
by

xn = °4 · 2n/15 + (°3)nC
1

+ 5nC
2

.

Applying the initial conditions x
1

= 2, x
2

= 4, we have

C
1

= °19

60
, C

2

=
19

60
.

Hence

xn = °4 · 2n

15
° (°1)n19 · 3n

60
+

19 · 5n

60
.

(b) Set r2 = 4r + 5, then r
1

= °1, r
2

= 5. We have r
3

= 1 6= r
1

,
r
3

= 1 6= r
2

. Let xn = A be a special solution. Then A = 4A + 5A + 3, i.e.,
A = °3/8. Thus the solution is given by

xn = °3

8
+ (°1)nC

1

+ 5nC
2

.

Applying the initial conditions x
1

= 3, x
2

= 5, we have

C
1

= °23

12
, C

2

=
7

24
.

(c) Set r2 = 3r ° 2. Then r
1

= 1, r
2

= 2. Note that r
3

= 2 = r
2

. Let
xn = 2nnA be a special solution. Then

2nnA = 3 · 2n°1(n° 1)A° 2 · 2n°2(n° 2)A + 2n.

Thus A = 2. The solution is given by

xn = 2n+1n + C
1

+ 2nC
2

.

18



Applying the initial conditions x
0

= 2, x
1

= 4, we have C
1

= 4, C
2

= °2.
Therefore

xn = 2n+1(n° 1) + 4.

(d) Set r2 = 6r ° 9. Then r
1

= r
2

= 3. Thus r
3

= 3 = r
1

= r
2

. Let
xn = 3nn2A be a special solution. Then

3nn2A = 6 · 3n°1(n° 1)2A° 9 · 3n°2(n° 2)2A + 3n+2.

Thus A = 9/2. The solution is given by

xn =
3n+2n2

2
+ 3nC

1

+ 3nnC
2

.

Applying the initial conditions x
0

= 3, x
1

= 9, we have C
1

= 3, C
2

= °9/2.
Therefore

xn = 3n

µ
9

2
n2 ° 9

2
n + 3

∂
.

3. Show that if sn and tn are solutions for the non-homogeneous linear recur-
rence relation

xn = axn°1

+ bxn°2

+ f (n), n ∏ 2,

then xn = sn°tn is a solution for the homogeneous linear recurrence relation

xn = axn°1

+ bxn°2

, n ∏ 2.

Proof. Since xn = sn, tn are solutions of the non-homogeneous equations,
then for n ∏ 2,

sn = asn°1

+ bsn°2

+ f (n), tn = atn°1

+ btn°2

+ f (n).

Thus
sn ° tn = a(sn°1

° tn°1

) + b(sn°2

° tn°2

).

This means that xn = sn ° tn is a solution for the corresponding homoge-
neous equation.

4. Let the characteristic equation for the homogeneous linear recurrence rela-
tion

xn = axn°1

+ bxn°2

, n ∏ 2
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have two distinct roots r
1

and r
2

. Show that every solution can be written
in the form

xn = c
1

rn
1

+ c
2

rn
2

for some constants c
1

and c
2

.

Proof. Note that any solution xn = sn of the recurrence relation is com-
pletely determined by the values x

0

and x
1

. Also note that xn = c
1

rn
1

+c
2

rn
2

satisfies the recurrence relation for any constants c
1

and c
2

. Set
Ω

x
0

= c
1

+ c
2

x
1

= c
1

r
1

+ c
2

r
2

By Cramer’s rule, we have

c
1

=

ØØØØ
x

0

1
x

1

r
2

ØØØØ
ØØØØ

1 1
r
1

r
2

ØØØØ

=
x

0

r
2

° x
1

r
2

° r
1

, c
2

=

ØØØØ
1 x

0

r
1

x
1

ØØØØ
ØØØØ

1 1
r
1

r
2

ØØØØ

=
x

1

° x
0

r
1

r
2

° r
1

.

Then both sequences sn and tn = c
1

rn
1

+ c
2

rn
2

with above constants c
1

and
c
2

satisfy the same recurrence relation and initial values x
0

and x
1

. Thus
sn = tn. This proves that every solution of the recurrence relation can be
written in the form xn = c

1

rn
1

+ c
2

rn
2

.

5. § Let A
1

, A
2

, . . . , An+1

be k £ k matrices. Let Cn be the number of ways
to evaluate the product A

1

A
2

· · ·An+1

by choosing diÆerent orders in which
to do the n multiplications.

(a) Find a recurrence relation with an initial condition for the sequence Cn.

(b) Verify that the sequence 1

n+1

°
2n
n

¢
satisfies your recurrence relation and

conclude that Cn = 1

n+1

°
2n
n

¢
. (The numbers Cn are called Catalan

numbers.)

Solution. (a) It is clear that C
0

= C
1

= 1, C
2

= 2. Note that any way to
realize the product A

1

A
2

· · ·An+2

must be obtained finally as follows:

(A
1

A
2

· · ·Ak+1| {z }
k+1

)(Ak+2

Ak+3

· · ·An+2| {z }
n°k+1

).
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Thus the sequence Cn satisfies the recurrence relation

Cn+1

=
nX

k=0

CkCn°k.

(b) Not required.

6. Find a general formula for the recurrence relation

xn = axn°1

+ b + cn

in terms of x
0

, where a, b, c are real constants.

Solution. Let xn = A + Bn be a special solution. Then

A + Bn = a(A + B(n° 1)) + b + cn.

Thus
A° aA + aB ° b + (B ° aB ° c)n = 0.

If a 6= 1, we have

A =
b° a(b + c)

(1° a)2
, B =

c

1° a
.

The general solution is given by

xn =
b° a(b + c)

(1° a)2
+

cn

1° a
+ Can.

Applying the initial x
0

, we have C = x
0

+ a(b+c)°b
(1°a)

2

. Hence

xn =
b° a(b + c)

(1° a)2
+

cn

1° a
+

µ
x

0

+
a(b + c)° b

(1° a)2

∂
an.

If a = 1, then

xn = x
0

+ bn + c(n + (n° 1) + · · · + 1)

= x
0

+ bn +
n(n + 1)c

2
.

7. Find an explicit formula for each of the sequences defined by the recurrence
relations with initial conditions.
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(a) xn = 5xn
3

+ 5, x
1

= 5, n = 3k, k ∏ 0.

(b) xn = xbn
2

c + 3, x
1

= 4, n ∏ 1.

(c) x
2n = 2xn + 5° 7n, x

1

= 0.

Solution. (a) a = 5 6= 1, b = 3, c = 5. Then

xn =
c(anlogb a ° 1)

a° 1
=

5

4

°
nlog

3

5 ° 1
¢
.

(b) a = 1, b = 2, c = 3. Let 2k ∑ n < 2k+1 for some k 2 Z
+

. Then

xn = xbn
2

c + 3 = xb n
2

2

c + 2 · 3 = xb n
2

3

c + 3 · 3

= · · · = xb n
2

k c + k · 3 = x
1

+ 3k

= 4 + 3blog
2

nc.

(c) We assume that n = 2k. Then the recurrence relation can be written as

xn = 2xn
2

+ 5° 7n/2.

Thus

x
2

k = 2x
2

k°1

+ 5° 7 · 2k°1

= 2
°
2x

2

k°2

+ 5° 7 · 2k°2

¢
+ 5° 7 · 2k°1

= 22x
2

k°2

+ 5(1 + 2)° 7 · 2 · 2k°1

= 23x
2

k°3

+ 5(1 + 2 + 22)° 7 · 3 · 2k°1

= 2kx
2

0

+ 5(1 + 2 + · · · + 2k°1)° 7k2k°1

= 2kx
1

+ 5(2k ° 1)° 7k2k°1

= 5(2k ° 1)° 7k2k°1.

Therefore

xn = 5(n° 1)° 7n log
2

n

2
.

8. Let f (n) be a real sequence defined for n = 1, b, b2, . . ., and satisfy the
recurrence relation

f (n) = af
≥n

b

¥
+ h(n),
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where b ∏ 2 is an integer. Show that

f (n) = f (1)nlogb a +
°1+logb nX

i=0

aih
≥n

bi

¥
.

Proof. Let n = bk for some k 2 Z
+

. Then

f (bk) = af
°
bk°1

¢
+ h

°
bk

¢

= a
£
af

°
bk°2

¢
+ h

°
bk°1

¢§
+ h

°
bk

¢

= a2f
°
bk°2

¢
+ ah

°
bk°1

¢
+ h

°
bk

¢

= akf (1) +
k°1X

i=0

aih(bk°i).

Thus

f (n) = f (1)alogb n +

(logb n)°1X

i=0

aih
≥n

bi

¥
.

9. Let f (n) be a real sequence defined for n = 1, b, b2, b3, . . ., and satisfy the
recurrence relation

f (n) = af
≥n

b

¥
+ a

0

+ a
1

n + · · · + akn
k,

where a, b, a
0

, a
1

, . . . , ak are real constants, a > 0 and b > 1. Show that

(a) If a = bi for some 0 ∑ i ∑ k, then

f (n) = f (1)ni + ain
i logb n +

kX

j=0,j 6=i

bjaj

bj ° bi

°
nj ° ni

¢
.

(b) If a 6= bi for all 0 ∑ i ∑ k, then

f (n) = f (1)nlogb a +
kX

j=0

ajb
j
°
nj ° nlogb a

¢

bj ° a
.
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Proof. Write h(n) =
Pk

j=0

ajn
j. Then by the previous problem, we have

f (n) = f (1)alogb n +
°1+logb nX

s=0

ash
≥n

bs

¥
.

(a) Since a = bi for some 0 ∑ i ∑ k, then

alogb n = bi logb n = blogb ni
= ni;

(logb n)°1X

s=0

ash
≥n

bs

¥
=

(logb n)°1X

s=0

as
kX

j=0

aj

≥n

bs

¥j

=
kX

j=0

ajn
j

(logb n)°1X

s=0

(ab°j)s

=
kX

j=0,j 6=i

ajn
j · (ab°j)logb n ° 1

ab°j ° 1

+ain
i logb n.

Since nj
≥

(ab°j
)

logb n°1

ab°j°1

¥
= nj

≥
(bi°j

)

logb n°1

bi°j°1

¥
= (ni°nj

)bj

bi°bj
, then

f (n) = f (1)ni + ain
i logb n +

kX

j=0,j 6=i

ajb
j(nj ° ni)

bj ° bi
.

(b) Note that

alogb n =
°
blogb a

¢
logb n

=
°
blogb n

¢
logb a

= nlogb a.

Since

nj

µ
(ab°j)logb n ° 1

ab°j ° 1

∂
= nj

µ
nlogb nan°j ° 1

ab°j ° 1

∂
,

then

f (n) = f (1)nlogb a +
kX

j=0

ajb
j
°
nj ° nlogb a

¢

bj ° a
.
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