How to construct orthonormal basis vectors?

Let us illustrate this procedure by an example of a vector space V which is a plane. Given that V has a basis \vec{v}_1 and \vec{v}_2 which are **NOT** orthogonal, how do we construct an orthonormal basis?

Step 1: The first basis vector is easy to construct: $\vec{u}_1 = \frac{1}{|\vec{v}_1||} \vec{v}_1$.

Step 2: Construct $\overrightarrow{v}_2^{||} = \text{proj}_L(\overrightarrow{v}_2) = \langle \overrightarrow{u}_1, \overrightarrow{v}_2 \rangle \overrightarrow{u}_1$

Step 3: Construct $\overrightarrow{v}_2^{\perp} = \overrightarrow{v}_2 - \overrightarrow{v}_2^{\parallel}$.

Step 4: Construct $\overrightarrow{u}_2 = \frac{1}{||\overrightarrow{v}_2^{\perp}||} \overrightarrow{v}_2^{\perp}$

Example: Find an orthonormal basis
$$\vec{u}_1$$
, \vec{u}_2 of the subspace $V = \text{span}\left(\begin{pmatrix}1\\1\\1\\1\end{pmatrix}, \begin{pmatrix}1\\9\\9\\1\end{pmatrix}\right)$ of \mathbb{R}^4 with basis

Solution: Using the procedure mentioned above, we arrive at \overline{i}

 $\overrightarrow{v}_1 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \quad \overrightarrow{v}_2 = \begin{pmatrix} 1\\9\\9\\1 \end{pmatrix}.$

$$\vec{u}_1 = \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{pmatrix}, \quad \vec{u}_2 = \begin{pmatrix} -1/2 \\ 1/2 \\ 1/2 \\ -1/2 \end{pmatrix}$$

Gram-Schmidt orthonormalisation process

Consider the basis $\vec{v}_1, \ldots, \vec{v}_m$ of a subspace V of \mathbb{R}^n . For $j = 2, \ldots, m$; we resolve the vector \vec{v}_j into its components parallel and perpendicular to the span of the preceding vectors $\vec{v}_1, \ldots, \vec{v}_{j-1}$:

$$\overrightarrow{v}_{j} = \overrightarrow{v}_{j}^{||} + \overrightarrow{v}_{j}^{\perp}, \quad \text{with respect to span}(\overrightarrow{v}_{1}, \dots, \overrightarrow{v}_{j-1}).$$
Then $\overrightarrow{u}_{1} = \frac{1}{||\overrightarrow{v}_{1}||} \overrightarrow{v}_{1}, \quad \overrightarrow{u}_{2} = \frac{1}{||\overrightarrow{v}_{2}^{\perp}||} \overrightarrow{v}_{2}^{\perp}, \dots, \overrightarrow{u}_{j} = \frac{1}{||\overrightarrow{v}_{j}^{\perp}||} \overrightarrow{v}_{j}^{\perp}, \dots, \overrightarrow{u}_{m} = \frac{1}{||\overrightarrow{v}_{m}^{\perp}||} \overrightarrow{v}_{m}^{\perp}$
Is an orthonormal basis of *V*. Here $\overrightarrow{v}_{j}^{\perp} = \overrightarrow{v}_{j} - \overrightarrow{v}_{j}^{||} = \overrightarrow{v}_{j} - \langle \overrightarrow{u}_{1}, \overrightarrow{v}_{j} \rangle \overrightarrow{u}_{1} - \dots - \langle \overrightarrow{u}_{j-1}, \overrightarrow{v}_{j} \rangle \overrightarrow{u}_{j-1}.$

QR factorization

The Gram-Schmidt process represents a change of basis from the old basis $\overrightarrow{v}_1, \ldots, \overrightarrow{v}_m$ to a new orthonormal basis $\overrightarrow{u}_1, \ldots, \overrightarrow{u}_m$ of V. The QR factorization involves a change of basis matrix R such that $\begin{pmatrix} | & | & | & | \\ \overrightarrow{v}_1 & \cdots & \overrightarrow{v}_m \\ | & | & | & | \end{pmatrix} = \begin{pmatrix} | & | & | & | \\ \overrightarrow{u}_1 & \cdots & \overrightarrow{u}_m \\ | & | & | & | \end{pmatrix} R$

i.e. M = QR;

where R is an upper triangle matrix with entries:

 $r_{11} = ||\overrightarrow{v}_1||, \ r_{jj} = ||\overrightarrow{v}_j^{\perp}|| \quad (\text{ for } j = 2, ..., m), \text{ and } r_{ij} = \langle \overrightarrow{u}_i, \overrightarrow{v}_j \rangle \quad (\text{ for } i < j).$

Example: Find the QR factorization of the matrix $M = \begin{pmatrix} 2 & 2 \\ 1 & 7 \\ -2 & -8 \end{pmatrix}$. Solution: $Q = \frac{1}{3} \begin{pmatrix} 2 & -2 \\ 1 & 2 \\ -2 & -1 \end{pmatrix}$ and $R = \begin{pmatrix} 3 & 9 \\ 0 & 6 \end{pmatrix}$.