How to construct orthonormal basis vectors?

Let us illustrate this procedure by an example of a vector space V which is a plane. Given that V has a basis \vec{v}_{1} and \vec{v}_{2} which are NOT orthogonal, how do we construct an orthonormal basis?
Step 1: The first basis vector is easy to construct: $\vec{u}_{1}=\frac{1}{\left\|\vec{v}_{1}\right\|} \vec{v}_{1}$.

Step 2: Construct $\vec{v}_{2}^{\|}=\operatorname{proj}_{L}\left(\vec{v}_{2}\right)=\left\langle\vec{u}_{1}, \vec{v}_{2}\right\rangle \vec{u}_{1}$
Step 3: Construct $\vec{v}_{2}^{\perp}=\vec{v}_{2}-\vec{v}_{2}^{\|}$.
Step 4: Construct $\vec{u}_{2}=\frac{1}{\left\|\vec{v}^{\perp}\right\|} \vec{v}_{2}^{\perp}$

Example: Find an orthonormal basis \vec{u}_{1}, \vec{u}_{2} of the subspace $V=\operatorname{span}\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 9 \\ 9 \\ 1\end{array}\right)$ of \mathbb{R}^{4} with basis $\vec{v}_{1}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right), \quad \vec{v}_{2}=\left(\begin{array}{l}1 \\ 9 \\ 9 \\ 1\end{array}\right)$
Solution: Using the procedure mentioned above, we arrive at $\vec{u}_{1}=\left(\begin{array}{l}1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2\end{array}\right), \quad \vec{u}_{2}=\left(\begin{array}{c}-1 / 2 \\ 1 / 2 \\ 1 / 2 \\ -1 / 2\end{array}\right)$

Gram-Schmidt orthonormalisation process

Consider the basis $\vec{v}_{1}, \ldots, \vec{v}_{m}$ of a subspace V of \mathbb{R}^{n}. For $j=2, \ldots, m$; we resolve the vector \vec{v}_{j} into its components parallel and perpendicular to the span of the preceding vectors $\vec{v}_{1}, \ldots, \vec{v}_{j-1}$:

$$
\vec{v}_{j}=\vec{v}_{j}^{\|}+\vec{v}_{j}^{\perp}, \quad \text { with respect to } \operatorname{span}\left(\vec{v}_{1}, \ldots, \vec{v}_{j-1}\right) .
$$

Then $\vec{u}_{1}=\frac{1}{\left\|\vec{v}_{1}\right\|} \vec{v}_{1}, \quad \vec{u}_{2}=\frac{1}{\left\|\vec{v}_{2}^{\perp}\right\|} \vec{v}_{2}^{\perp}, \ldots, \vec{u}_{j}=\frac{1}{\left\|\vec{v}_{j}^{\perp}\right\|} \vec{v}_{j}^{\perp}, \ldots, \vec{u}_{m}=\frac{1}{\left\|\vec{v}_{m}^{\perp}\right\|} \vec{v}_{m}^{\perp}$
Is an orthonormal basis of V. Here $\vec{v}_{j}^{\perp}=\vec{v}_{j}-\vec{v}_{j}^{\|}=\vec{v}_{j}-\left\langle\vec{u}_{1}, \vec{v}_{j}\right\rangle \vec{u}_{1}-\cdots-\left\langle\vec{u}_{j-1}, \vec{v}_{j}\right\rangle \vec{u}_{j-1}$.

QR factorization

The Gram-Schmidt process represents a change of basis from the old basis $\vec{v}_{1}, \ldots, \vec{v}_{m}$ to a new orthonormal basis $\vec{u}_{1}, \ldots, \vec{u}_{m}$ of V. The QR factorization involves a change of basis matrix R such that $\left(\begin{array}{ccccc}\mid & \mid & \mid & \mid & \mid \\ \vec{v}_{1} & \cdot & \cdot & \cdot & \vec{v}_{m} \\ \mid & \mid & \mid & \mid & \mid\end{array}\right)=\left(\begin{array}{ccccc}\mid & \mid & \mid & \mid & \mid \\ \vec{u}_{1} & \cdot & \cdot & \cdot & \vec{u}_{m} \\ \mid & \mid & \mid & \mid & \mid\end{array}\right) R$
i.e. $M=Q R$;
where R is an upper triangle matrix with entries:
$r_{11}=\left\|\vec{v}_{1}\right\|, r_{j j}=\left\|\vec{v}_{j}^{\perp}\right\|($ for $j=2, \ldots, m)$, and $r_{i j}=\left\langle\vec{u}_{i}, \vec{v}_{j}\right\rangle \quad($ for $i<j)$.

Example: Find the QR factorization of the matrix $M=\left(\begin{array}{cc}2 & 2 \\ 1 & 7 \\ -2 & -8\end{array}\right)$.
Solution: $Q=\frac{1}{3}\left(\begin{array}{cc}2 & -2 \\ 1 & 2 \\ -2 & -1\end{array}\right)$ and $R=\left(\begin{array}{ll}3 & 9 \\ 0 & 6\end{array}\right)$.

