Midsem Rubric

Answer 1:(10 marks) X and Y are independent random variables each with an exponential distribution $\exp \left(\mu_{1}\right)$ and $\exp \left(\mu_{2}\right)$, respectively. Here, $\frac{1}{\mu_{1}}=\frac{1}{\mu_{2}}=100=\frac{1}{\lambda}$ (say $)$.
To compute the probability of dual engine flame out to be more than 75 flying hours, we have to compute $P(X+Y>z)$ where $z=75$.

$$
\begin{equation*}
P(X+Y>z)=1-P(X+Y \leq z) \tag{2marks}
\end{equation*}
$$

First we will compute

$$
\begin{aligned}
& P(X+Y \leq z)=\int_{0}^{z} P(X \leq z-y \mid Y=y) f_{Y}(y) d y \\
&=\int_{0}^{z} P(X \leq z-y) f_{Y}(y) d y \\
&=\int_{0}^{z}\left(\int_{0}^{z-y} f_{X}(x) d x\right) f_{Y}(y) d y \\
&=\int_{0}^{z}\left(\int_{0}^{z-y} \lambda \exp (-\lambda x) d x\right) \lambda \exp (-\lambda y) d y \quad(5 \text { marks }) \\
&=\int_{0}^{z} \lambda(1-\exp (-\lambda(z-y))) \exp (-\lambda y) d y \\
&=1-\exp (-\lambda z)-\lambda z \exp (-\lambda z) . \\
& F_{X+Y}(z)=1-\exp (-\lambda z)-\lambda z \exp (-\lambda z) . \\
& P(X+Y>75)=1-F(75)=1-\left.(1-\exp (-\lambda z)-\lambda z \cdot \exp (-\lambda z))\right|_{(z=75)}=0.8266 \quad(3 \text { marks })
\end{aligned}
$$

Answer 2 (10 marks): Let $T_{k}=$ number of cells in generation k. Then $T_{k}=X_{1}+X_{2}+\cdots+$ $X_{T_{k-1}}$ where $X_{1}, \cdots, X_{T_{k-1}}$ are the of progeny of the first, second, $\cdots, T_{k-1}^{t h}$ cell in generation $k-1$. So,

$$
\begin{equation*}
E\left[T_{k}\right]=E_{T_{k-1}}\left[E\left[T_{k} \mid T_{k-1}\right]\right] \tag{2marks}
\end{equation*}
$$

$$
\begin{align*}
& =E\left[T_{k} \mid T_{k-1}=1\right] P\left(T_{k-1}=1\right)+E\left[T_{k} \mid T_{k-1}=2\right] P\left(T_{k-1}=2\right)+\cdots \\
& =E\left[T_{k}=X_{1}\right] P\left(T_{k-1}=1\right)+E\left[T_{k}=X_{1}+X_{2}\right] P\left(T_{k-1}=2\right)+\cdots \tag{2marks}
\end{align*}
$$

$=\mu P\left(T_{k-1}=1\right)+2 \mu P\left(T_{k-1}=2\right)+\cdots$
$=\mu \sum_{n=1}^{n=\infty} n P\left(T_{k-1}=n\right)$
$=\mu E\left[T_{k-1}\right]$.
(3 marks)
Hence, with the initial condition $E\left[T_{0}\right]=1$, we will get $E\left[T_{k}\right]=\mu^{k} E\left[T_{0}\right]=\mu^{k}$.
So,

$$
\begin{aligned}
\text { Total tumor cells over n generations } & =\sum_{k=0}^{k=n} E\left[T_{k}\right] \\
=1+\mu+\mu^{2}+\cdots+\mu^{n} & =\frac{1-\mu^{n+1}}{1-\mu}
\end{aligned}
$$

Clearly, this diverges whenever $\mu \geq 1$. To halt the growth, we need $\mu<1$ (assuming that previous generation does not die at every step, if you assume it dies, then $\mu=1$ also works). In this case,
(1 mark)

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=0}^{k=n} E\left[T_{k}\right]=\frac{1}{1-\mu} \tag{1mark}
\end{equation*}
$$

Answer 3 (10 marks):

a) (8 marks) Let X_{i} be a random variable denoting the number of balls in the $i^{\text {th }}$ bin. Where it is 1 , when there is no ball in $i^{t h}$ bin and 0 with at least 1 ball in the bin. So,

$$
X_{i}=\left\{\begin{array}{lr}
1, & \text { when } i^{t h} \text { bin is empty } \tag{2marks}\\
0, & \text { otherwise }
\end{array}\right.
$$

We need to find the probability distribution of this random variable for finding the probability. This is

$$
P\left(X_{i}=j\right)=\left\{\begin{array}{cr}
\left(\frac{b-1}{b}\right)^{m}, & j=1 \tag{3marks}\\
1-P\left(X_{i}=1\right), & \text { otherwise }
\end{array}\right.
$$

Note: You can also directly write that this is Bernouli random variable with $p=\left(\frac{b-1}{b}\right)^{m}$. If the value of p is not right, you do not get credit.

We need to find expectation of the random variable Y where $Y=X_{1}+\cdots+X_{b}$. Clearly, Y denotes the number of empty bins. It is clear that X_{i} should be independent and identically distributed. So,

$$
\begin{equation*}
E[Y]=b E[X]=b\left(\frac{b-1}{b}\right)^{m} \tag{3marks}
\end{equation*}
$$

Note:

a) Since $Y=X_{1}+\cdots+X_{b}$ and $X_{i} \sim \operatorname{Bin}(1, p)$ where $p=\left(\frac{b-1}{b}\right)^{m}$, you can directly write $Y \sim \operatorname{Bin}(b, p)$ and use the formula for expectation of Binomial, i.e.
$E[Y]=b p=b\left(\frac{b-1}{b}\right)^{m}$. If your value of n or p in formula is not correct, you loose full credit.
b) It is possible that you have swapped 1 and 0 when you have defined your random variable X_{i}, you will still get full credit.
c) If you have calculated probability and expectation for only 1 or 0 ball allowed in a bin, you do not get any credit. You were expected to calculate it in the case that any number of balls are allowed to be in a bin (eg all the balls could be in a bin).
b) ($\mathbf{2}$ marks) To evaluate the limit, we can proceed from $E[Y]$. Since, b is very large, we can make the approximation $\left(1-\frac{1}{b}\right)^{b} \approx e^{-1}$. Thus, $E[Y]=b e^{-\frac{m}{b}}$ and hence $E[Y] \rightarrow \infty$ as $b \rightarrow \infty$. Note that for large b, we can use the Taylor approximation to the exponential, i.e.

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

Then, $b e^{-\frac{m}{b}}=b\left(1-\frac{m}{b}+O\left(\frac{1}{b}\right)\right) \approx b\left(1-\frac{m}{b}\right)=b-m$.

Alternatively,

$E[Y] \geq b-m$ since we at least have $b-m$ empty bins even if all m balls fall in different bins. In the limit $b \rightarrow \infty$, it is clear that $E[Y] \rightarrow \infty$. In fact, $E[Y] \approx b-m$, to see this, see the method below.

Alternatively,

We can also proceed from

$$
\begin{aligned}
E[Y]=b\left(\frac{b-1}{b}\right)^{m} & =(b-1)\left(1-\frac{1}{b}\right)^{m-1} \\
& =(b-1)\left(\binom{m}{0}-\binom{m}{1}\left(\frac{1}{b}\right)+\binom{m}{2}\left(\frac{1}{b}\right)^{2}+\cdots(\text { higher order terms })\right) \\
& =(b-1)\left(1-\left(\frac{m}{b}\right)+\frac{m(m-1)}{2}\left(\frac{1}{b}\right)^{2}+\cdots(\text { higher order terms })\right) \\
& =b-m+O\left(\frac{1}{b}\right) \approx b-m, \quad \text { for large } b .
\end{aligned}
$$

Note: You only get credit for this part if you are able to explain why $E[Y] \rightarrow \infty$ when $b \rightarrow \infty$ or alternatively if you are able to sufficiently show that $E[Y] \approx b-m$ when $1<m \ll b$.

