(Definition of vector spaces and its examples, Concept of linear dependence/independence vectors, Basis and dimension of vector spaces and its examples, properties of basis

Name and section: \qquad

Instructor's name: \qquad

1. Show that $V=\{(x, y, 0) \mid x, y \in \mathbb{R}\}$ form a vector space over the field \mathbb{R}.
2. Check whether it is vector space or not .

$$
V=\left\{a x^{2}+b x+c \mid a, b \in \mathbb{R} \text { and } c=1\right\}
$$

3. Is the set $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$ a linearly independent subset of \mathbb{R}^{2}.
4. Determine whether the given vectors are linearly independent or linearly dependent in \mathbb{R}^{3}

$$
\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
6
\end{array}\right]
$$

5. Check whether the following vectors forms a basis of \mathbb{R}^{2} or not.

$$
\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right]\left[\begin{array}{l}
1 \\
4
\end{array}\right]\right\}
$$

and if it is basis of \mathbb{R}^{2} then write for any arbitrary vector $\left[\begin{array}{l}a \\ b\end{array}\right]$ of \mathbb{R}^{2} in the linear combination of $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right]\left[\begin{array}{l}1 \\ 4\end{array}\right]\right\}$.
6. Suppose $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ points lies on the line in \mathbb{R}^{2} then show that set $\left\{v_{2}-v_{1}, v_{4}-v_{3}\right\}$ is linearly dependent subset of \mathbb{R}^{2}.
7. let

$$
W=\{(x, y, z) \mid x+y+z=0\}
$$

show that W is a vector space over field \mathbb{R} and find its basis and dimension.

