Tutorial Worksheet (WL1.1, WL1.2 & WL2.1)

(Definition of vector spaces and its examples, Concept of linear dependence/independence vectors, Basis and dimension of vector spaces and its examples, properties of basis

Name and section:

Instructor's name:

- 1. Show that $V = \{(x, y, 0) | x, y \in \mathbb{R}\}$ form a vector space over the field \mathbb{R} .
- 2. Check whether it is vector space or not.

$$V = \{ax^2 + bx + c \mid a, b \in \mathbb{R} \text{ and } c = 1\}$$

- 3. Is the set $\left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\}$ a linearly independent subset of \mathbb{R}^2 .
- 4. Determine whether the given vectors are linearly independent or linearly dependent in \mathbb{R}^3

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 6 \end{bmatrix}$$

5. Check whether the following vectors forms a basis of \mathbb{R}^2 or not.

$$\left\{ \begin{bmatrix} 1\\2\end{bmatrix}\begin{bmatrix} 1\\4\end{bmatrix}\right\}$$

and if it is basis of \mathbb{R}^2 then write for any arbitrary vector $\begin{bmatrix} a \\ b \end{bmatrix}$ of \mathbb{R}^2 in the linear combination of $\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} \right\}$.

- 6. Suppose $\{v_1, v_2, v_3, v_4\}$ points lies on the line in \mathbb{R}^2 then show that set $\{v_2 v_1, v_4 v_3\}$ is linearly dependent subset of \mathbb{R}^2 .
- 7. let

$$W = \{(x, y, z) | x + y + z = 0\}$$

1

show that W is a vector space over field $\mathbb R$ and find its basis and dimension.