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List of Experiments

1. A Brief Introduction to Matlab
– will familiarize the students with basic commands and functions in Matlab.
– 4-6 contact hours (2-3 weeks).

2. Least Squares Regression Analysis for Predicting Energy Consumption
– application in electrical, energy and environmental engineering.
– 2 contact hours (1 week).

3. Fundamental Concepts of Markov Processes with Applications in Weather
Prediction and Random Walks
– application in weather forecasting, random walks and Brownian motion.
– 2 contact hours (1 week).

4. Construction of a Markovian Model using the Viterbi Algorithm to predict
Aerodynamic Control Laws of an Aircraft
– application in mechanical and aerospace engineering.
– 4 contact hours (2 weeks).

5. Analyzing Statistical Differences in Multi-Population Means using ANOVA
to prioritize Post Disaster Reconstruction Projects
– application in civil and construction engineering.
– 2 contact hours (1 week).

6. Autoregressive Model of Time Series Data using the YuleWalker Equations
to forecast Employment Growth Statistics
– application in logistics and data analytics.
– 2 contact hours (1 week).

7. Multivariate Principal Component Analysis for Image Compression
– application in computer science engineering, image and signal processing.
– 2 contact hours (1 week).

Term Projects

Students (in groups of 3 or 4) will be required to submit a term project based on an engineering applica-
tion of any of the statistical models and algorithms covered in the above mentioned laboratory experiments.
To accomplish this they will have to work with actual data available online or field data collected by them.
The projects will be graded based on novelty of application, extent of real engineering or scientific data used
in their analysis, 10-15 minutes oral presentation and a team report on the respective projects. The plan (pro-
posal) of the projects will have to be presented to the instructor in the form of a one page abstract and the
approval of the instructor must be obtained before the end of the first week of class after the mid-semester ex-
amination. The oral presentations will be scheduled during the last two weeks of the academic session before
the end semester examination.

Sessional points: Weekly lab experiments (5), project proposal (7), oral presentation (8), project report (10).
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A Brief Introduction to Matlab

1 Mathematical operations

Try the following operations and commands on the command line in the command window of Matlab.

1.1 Defining an array and arranging in ascending and descending order

>> A = [2 4 -3 43 2 10 log(200)]

A =

2.0000 4.0000 -3.0000 43.0000 2.0000 10.0000 5.2983

>> sort(A)

ans =

-3.0000 2.0000 2.0000 4.0000 5.2983 10.0000 43.0000

>> sort(A,’descend’)

ans =

43.0000 10.0000 5.2983 4.0000 2.0000 2.0000 -3.0000

1.2 Defining a matrix and arranging in ascending and descending order

>> B = [2 3 1 4; -4 -2 0 -13; 66 3 0.2 1/3]

B =

2.0000 3.0000 1.0000 4.0000
-4.0000 -2.0000 0 -13.0000
66.0000 3.0000 0.2000 0.3333

>> sort(B)

ans =

-4.0000 -2.0000 0 -13.0000
2.0000 3.0000 0.2000 0.3333

66.0000 3.0000 1.0000 4.0000

>> sort(B,2)

ans =

1.0000 2.0000 3.0000 4.0000
-13.0000 -4.0000 -2.0000 0

0.2000 0.3333 3.0000 66.0000
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1.3 Powers of a matrix and its elements

>> C = [ 1 2 3; 4 2 3; 5 6 2]

C =

1 2 3
4 2 3
5 6 2

>> Cˆ2

ans =

24 24 15
27 30 24
39 34 37

>> C.ˆ2

ans =

1 4 9
16 4 9
25 36 4

>> D = [ 3 3 2; 5 0 1; -2 3.5 6]

D =

3.0000 3.0000 2.0000
5.0000 0 1.0000

-2.0000 3.5000 6.0000

>> C*D

ans =

7.0000 13.5000 22.0000
16.0000 22.5000 28.0000
41.0000 22.0000 28.0000

>> C.*D

ans =

3 6 6
20 0 3

-10 21 12
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1.4 Finding maximum and minimum entries in an array (or matrix)

>> A = [ 4 2 -7 -0.2 33 12]

A =

4.0000 2.0000 -7.0000 -0.2000 33.0000 12.0000

>> max(A)

ans =

33

>> min(A)

ans =

-7

Finding argmax and argmin in an array

>> find(A == max(A))

ans =

5

>> find(A == min(A))

ans =

3

>> D

D =

3.0000 3.0000 2.0000
5.0000 0 1.0000

-2.0000 3.5000 6.0000

>> max(D)

ans =

5.0000 3.5000 6.0000

>> max(D,[],2)
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ans =

3
5
6

Summing (and cumulative summing) rows and columns of a matrix

>> A = [ 3 1 -2 5; 0 2 11 -4; 9 0 7 6]

A =

3 1 -2 5
0 2 11 -4
9 0 7 6

>> sum(A)

ans =

12 3 16 7

>> sum(A,2)

ans =

7
9
22

>> cumsum(A)

ans =

3 1 -2 5
3 3 9 1
12 3 16 7

>> cumsum(A,2)

ans =

3 4 2 7
0 2 13 9
9 9 16 22

Product of entries of a matrix

>> prod(A)
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ans =

0 0 -154 -120

>> prod(A,2)

ans =

-30
0
0

1.5 Accessing certain sections of a matrix

>> A = [22 3 -4; 0 1 7; 2 -1 2]

A =

22 3 -4
0 1 7
2 -1 2

>> A(:,2)

ans =

3
1
-1

>> A(3,:)

ans =

2 -1 2

>> [-2 -1 -3].*A(1,:)

ans =

-44 -3 12

1.6 Some elementary mathematical functions

>> exp(2)

ans =

7.3891

>> sin(pi/4)
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ans =

0.7071

>> log(100)

ans =

4.6052

>> log10(100)

ans =

2

>> exp([1 2; 3 4])

ans =

2.7183 7.3891
20.0855 54.5982

1.7 Random number generator

>> rand

ans =

0.3112

>> rand()

ans =

0.5285

>> rand(3)

ans =

0.1656 0.6541 0.4505
0.6020 0.6892 0.0838
0.2630 0.7482 0.2290

>> rand(1,2)

ans =

0.9133 0.1524
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>> a=2

a =

2

>> b=5

b =

5

>> r = a+(b-a).*rand(5,1) % random numbers between a and b
% from uniform distribution

r =

4.4775
3.6150
4.9884
2.2345
3.3280

>> randi([-3 3],5,1)

ans =

-3
3
1
0
-2

>> randperm(4)

ans =

3 4 2 1

>> nchoosek(5,2)

ans =

10
>> perms([1 2 3])

ans =

3 2 1
3 1 2
2 3 1
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2 1 3
1 3 2
1 2 3

Normally distributed random numbers

>> randn(5)

ans =

1.1275 -1.7502 -0.5336 -0.0348 1.3514
0.3502 -0.2857 -2.0026 -0.7982 -0.2248

-0.2991 -0.8314 0.9642 1.0187 -0.5890
0.0229 -0.9792 0.5201 -0.1332 -0.2938

-0.2620 -1.1564 -0.0200 -0.7145 -0.8479

1.8 Calculus and functional operations

Writing matlab script files
It must be noted that the command window is not the only interface in Matlab to perform mathemat-
ical operations. In fact there is a more optimal and preferred editor where one can write Matlab script
files and define functions of their choice. To familiarize the user with the matlab editor, the following
sequence of operations are written as a script file using the editor. In order to execute the code, you
simply have to hit the run icon on the editor at the top. The answers and results of the code appear on
the command window as well as in the workspace.

The commented sections of the code appear to the right of the % symbol and are non-executable
portions of the code. The comments should be self explanatory.

% function handles and function evaluations
f = @(y) exp(y)
f(1)

syms x % define x as a symbolic variable
g = 5*exp(x) + sin(x) % symbolic function definition
dg = diff(g) % symbolic differentiation
subs(dg,x,pi) % replace x with pi in the expression given by dg

% function handles and function evaluations
A = [1 2; 3 4] % A is a matrix whose eigen system we want to find
fn = @eig
%two alternate ways of finding eigenvector and eigenvalues
[EV ev] = fn(A)
% OR
[V e] = feval(fn,A)
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2 Graphical representation of data

2.1 Plotting functions

The following piece of program gives you an idea of plotting functions graphically, assigning appropriate
labels, defining boundaries of graphs and using desired font size and markers. Additionally, you will
also learn how to generate multiple plots within a single graphic frame using the matlab subplot
functionality. Tweak the parameters and practise to get a better understanding of the different available
options for pictorially depicting data in matlab.

x=[0:0.05:4*pi];
y=sin(x);
z=cos(x);
figure, subplot(3,1,1);
plot(x,y,’r*-’,x,z,’bo-’);
xlim([0 4*pi]);
ylim([-1.3 1.3]);
xlabel(’x’);
ylabel(’fundamental oscillations’);
legend(’sin(x)’,’cos(x)’);
title(’periodic functions’);

subplot(3,1,2);
xx=[0:0.1:4*pi];
t=tan(xx);
stem(xx,t,’mx’)
xlim([0 4*pi]);
ylim([-10 10]);
xlabel(’x’);
ylabel(’tan x’);
title(’periodic singular function’);

%% drawing rectangular pulse %%
% This example generates a pulse train using the default rectangular
% pulse of unit width. The repetition frequency is 0.5 Hz,
% the signal length is 60 s, and the sample rate is 1 kHz.
% The gain factor is a sinusoid of frequency 0.05 Hz.
t = 0:1/1e3:60;
d = [0:2:60;sin(2*pi*0.05*(0:2:60))]’;
x = @rectpuls;
y = pulstran(t,d,x);
subplot(3,1,3);
plot(t,y,’-bs’,...

’LineWidth’,2,...
’MarkerSize’,10,...
’MarkerEdgeColor’,’g’,...
’MarkerFaceColor’,[0.5,0.5,0.5]);

hold on
xlabel(’Time (s)’)
ylabel(’Waveform’)
title(’rectangular pulse train’);
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Figure 1: How to make subplots in matlab with labels and legends?

2.2 Plotting data on a bar graph

In a matlab script file, store data as a matrix as shown below. Then call a user defined function
mydataPlot which takes the input matrix as its argument and draws a joint-histogram of the data
over time (years). The data must be normalized on a scale of 0-2 and depicted as a bar graph.

The script file may contain the following lines of code.

%%%%%%%%%%%%%%%% making histograms %%%%%%%%%%%
% Ip stores input data in 3 columns:
% (Year, Rainfall, Temperature) in appropriate units
Ip=[2009 1000 39; 2010 997 34;2011 1152 41; 2012 855 31; ...

2013 1013 40; 2014 878 30; 2015 1243 43];
mydataPlot(Ip);

Writing user defined functions

mydataPlot is a user defined function which needs to be programmed by writing a short matlab
function and saving it as mydataPlot.m. The function may be written as follows.

function [X] = mydataPlot(Ip)

A = Ip(:,1);
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B = Ip(:,2);
C = Ip(:,3);
Bnew=(B(:)-min(B))/(max(B)-min(B));
Cnew=(C(:)-min(C))/(max(C)-min(C));
newData = [Bnew+1 Cnew+1]; % setting it on a normalized scale 0-2
figure, bar(A,newData(:,1:2));
xlabel(’Year’,’fontsize’,18);
ylabel(’Normalized data on a scale of 0-2’,’fontsize’,18);
legend(’Amount of rainfall’,’temperature’,’Location’,’northwest’);
title(’Visualizing trend & correlation qualitatively using joint-histogram’,...

’fontsize’,14);

end % denoting end of function

Figure 2: How to make bar graphs in matlab with labels and legends?

3 Loops and conditional statements

Matlab provides in-built loop functionalities using the following syntax.
for

.........

.........
end
or
while

.........

.........
end
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3.1 for loop to generate a matrix with labels in lexicographical order

% use for loops to construct a matrix with entries
% that store the serial location (lexicographical order)
% also compute the sum of all entries of the same matrix

imax=4; jmax=5;
running_sum=0;
for i=1:imax

for j=1:jmax
A(i,j) = (j + (i-1)*jmax);
running_sum = running_sum + A(i,j);

end
end

3.2 Conditional statement using if-else for comparing results

if running_sum == sum(sum(A))
disp(’my calculation is correct: Hurrah!’);

else
disp(’I made an error in calculation’);

end

3.3 for loops for printing prime numbers less than or equal to N

Exercise: Following is a pseudocode for printing all the prime numbers less than or equal to N where
N = 30 for example. Convert the pseudocode to matlab executable code and display your answer.

Pseudocode for printing prime numbers:

INPUT: N.

for all i from 2 to N
reset prime number flag to default ON
for all j from 2 to i/2

if remainder of i÷ j is not equal to 0
continue the current for loop

else
turn OFF prime number flag
break from the current for loop

end if-else condition
end for loop for j
if prime number flag is ON

store prime number i in a dynamic array
end if condition

end for loop for i

OUTPUT: display array containing the prime numbers.
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While implementing the above algorithm you will learn to use the following matlab commands:
mod, continue and break. Use >>doc 〈function name〉 or >>help 〈function name〉
on the command line to learn how to use them. Also, the comparative clause ‘is not equal to’ is written
in matlab as ∼=.

4 Data structures: loading, organizing, accessing and writing data

There are many different data structures available in matlab. Here we will discuss only some of the
important ones that may be relevant to us.

4.1 Data as graphs of matrices

A graph is a data structure that consists of the following two components.

1. A finite set of vertices also known as nodes.

2. A finite set of ordered pairs of the form (u, v) known as edges. The pair is ordered because (u, v)
is not same as (v, u) in case of a directed graph (di-graph). The pair of the form (u, v) indicates
that there is an edge from vertex u to vertex v. The edges may contain weight/value/cost.

Graphs are used to represent many real-life applications: Graphs are used to represent networks. The
networks may include paths in a city or telephone network or circuit network. Graphs are also used in
social networks like linkedIn, Facebook. For example, in Facebook, each person is represented with a
vertex (or node). Each node is a structure and contains information like id, name, gender and location
of a person.

4.1.1 Adjacency Matrix

A graph may be represented as an adjacency matrix. An adjacency matrix is a 2D array (or matrix) of
size V×V where V is the number of vertices in a graph. Let the 2D array be adj(i, j), a slot adj(i, j) = 1
indicates that there is an edge from vertex i to vertex j. Adjacency matrix for undirected graph is always
symmetric. Adjacency Matrix is also used to represent weighted graphs. If adj(i, j) = w, then there is
an edge from vertex i to vertex j with weight w.

Drawing a graph from adjacency matrix:

% Define a matrix adj.
adj = [0 1 1 0 ; 1 0 0 1 ; 1 0 0 1 ; 0 1 1 0];

% Draw a picture showing the connected nodes.
cla % clear current axis
subplot(1,2,1);
gplot(adj,[0 1;1 1;0 0;1 0],’.-’);
% gplot(A,xy) plots the graph (as in ’graph theory’) specified by A and xy
text([-0.2, 1.2 -0.2, 1.2],[1.2, 1.2, -.2, -.2],(’1234’)’, ...

’HorizontalAlignment’,’center’)
axis([-1 2 -1 2],’off’)
title(’undirected graph’,’fontsize’,14);

% Draw a picture showing the adjacency matrix.
subplot(1,2,2);
xtemp = repmat(1:4,1,4); ytemp = reshape(repmat(1:4,4,1),16,1)’;
text(xtemp-.5,ytemp-.5,char(’0’+adj(:)),’HorizontalAlignment’,’center’);
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line([.25 0 0 .25 NaN 3.75 4 4 3.75],[0 0 4 4 NaN 0 0 4 4])
axis off tight
title(’adjacency matrix’,’fontsize’,14);

Figure 3: A graph and its corresponding adjacency matrix.

Drawing the adjacency matrix of a given graph:

For fun, we will first use the matlab in-built function bucky to first draw the graph of a geodesic
dome.1

%% using bucky and find the adjacency matrix of a given graph
[B,V] = bucky;
G = graph(B);
figure,
p = plot(G);

In order to investigate the graph G in more detail, type >> G.Edges on the command line. Now, let us
say we were given the graph G (and not the matrix B), and we had to find the corresponding adjacency
matrix A, we would do as follows:

A = adjacency(G);
H = graph(A(1:10,1:10)); % graph only a section of the adjacency matrix
figure,
h = plot(H);

1https://en.wikipedia.org/wiki/Geodesic_dome
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Figure 4: Graph of the geodesic dome using the matlab function bucky.

The new plot graphs the selected section of the adjacency matrix A specified by the first 10× 10 entries
of A. The new adjacency matrix A can be seen from the command line as >> A and the new truncated
graph is shown below. The information pertaining to the new truncated graph can be found thusly.

>> H.Edges

ans =

112 table

EndNodes Weight
________ ______

1 2 1
1 5 1
1 6 1
2 3 1
3 4 1
4 5 1
6 7 1
6 10 1
7 8 1
8 9 1
9 10 1
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Figure 5: Graph of the truncated geodesic dome.

You can also use similar commands to generate the adjacency matrix of the graph in the previous
example (the box graph) and compare it with the matrix adj you defined to begin with.

Gnew=graph(adj)
Anew = adjacency(Gnew);
Hnew = graph(Anew);
figure,
hnew = plot(Hnew);

Compare Anew and adj to check for consistency.

>> Anew

Anew =

(2,1) 1
(3,1) 1
(1,2) 1
(4,2) 1
(1,3) 1
(4,3) 1
(2,4) 1
(3,4) 1

>> adj
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adj =

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

4.2 Data as tables

Often we will encounter situations where we may have to import data from an excel file (.csv file). This
data in the excel file will be assumed to be stored in tabular (columnar) format under field headings. An
example at hand is the file named

EnergyConsumptionMP_1996-2018.csv

where the data is stored in two columns under the field headings:

Year

and

EnergySupply_MU_

This data may be imported in matlab local workspace as follows:

%% reading data from .csv file
T = readtable(’EnergyConsumptionMP_1996-2018.csv’, ’ReadVariableNames’, ...

true, ’Format’, ’%f %f’);
xdata = T.Year;
ydata = T.EnergySupply_MU_;
>> xdata

xdata =

1996
1998
2000
2002
2004
2006
2008
2010
2012
2014
2016
2018

>> ydata

ydata =

27094
28599
30624
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32232
33435
36073
35503
35563
38799
42945
47858
51976

4.3 Local data structures in matlab

4.3.1 Structure arrays

Below is a code to show a single variable (named student) which contains two fields which are ”sub-
components” of what it means to be a student. Each field has its own name and its own type.

students(1).name = ’jim’;
students(1).age = 21;

students(2).name = ’Jane’;
students(2).age = 33;

students(3).name = ’Joe’;
students(3).age = 25;

students(4).name = ’Janet’;
students(4).age = 24;

A querry about the first student yields the following information.

>> students(1)

ans =

struct with fields:

name: ’jim’
age: 21

4.3.2 Cell arrays

Cell arrays contain data in cells that you access by numeric indexing. Common applications of cell
arrays include storing separate pieces of text and storing heterogeneous data from spreadsheets. For
example, store temperature data for three cities over time in a cell array.

temperature(1,:) = {’2009-12-31’, [45, 49, 0]};
temperature(2,:) = {’2010-04-03’, [54, 68, 21]};
temperature(3,:) = {’2010-06-20’, [72, 85, 53]};
temperature(4,:) = {’2010-09-15’, [63, 81, 56]};
temperature(5,:) = {’2010-12-09’, [38, 54, 18]};

>> temperature
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temperature = 5x2 cell array
{’2009-12-31’} {1x3 double}
{’2010-04-03’} {1x3 double}
{’2010-06-20’} {1x3 double}
{’2010-09-15’} {1x3 double}
{’2010-12-09’} {1x3 double}

Plot the temperatures for each city by date.

allTemps = cell2mat(temperature(:,2));
dates = datetime(temperature(:,1));

plot(dates,allTemps)
title(’Temperature Trends for Different Locations’)
xlabel(’Date’)
ylabel(’Degrees (Fahrenheit)’)

Figure 6: Graph of the truncated geodesic dome.

4.4 Writing to a binary file and reading from a binary file

Write a nine-element vector to a sample file, nine.bin.

fileID = fopen(’nine.bin’,’w’);
fwrite(fileID,[1:9]);
fclose(fileID);

Now, read the contents of the same file and store it in a local variable A.
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fileID = fopen(’nine.bin’);
A = fread(fileID)

4.5 Reading a graphic image

Read a sample image.

A = imread(’ngc6543a.jpg’);

imread returns a 650-by-600-by-3 array, A. Now, display the image.

>> image(A)

Use
>> doc imread
to learn more about the function. Likewise, you may use the matlab command imwrite to write data
to an image file.

4.6 Recording and playing a movie in matlab

For recording a set of graphic frames and constructing a movie, you may use getframe as shown
below immediately after the graphic frame is generated each time in a loop.

while n <= 100
.......
.......
plot(x,y,’r--’);
F(n) = getframe;
n=n+1;

end

In order to make a movie and play it twice, use the following.

>> figure, movie(F,2);

5 Final remarks

Finally, extensively use >> doc doc and >> help 〈function name〉 to explore different func-
tionalities available in matlab. Also visit the mathworks online help center at
https://in.mathworks.com/help/
in order to learn how to use matlab more effectively.

All the best. Have fun learning!

Amrik Sen
Autumn, 2019.
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Least Squares Regression Analysis for Predicting Energy Consumption

Objective of the experiment: To forecast statistical data using regression analysis by using the
method of least squares.

Learning concepts: Linear and nonlinear regression analysis, method of least squares, forecasting
and data analytics.

Theoretical Concepts

I. Introduction & overview: Given a set of nodes (independent variables) xdata and correspond-
ing data values (dependent variables) ydata, our objective is to find a curve of best fit that suit-
ably predicts data values at points not specified in xdata. Let {xi}ni=1 be the nodes in xdata and
{yi}ni=1 = {y(xi)}ni=1 be the corresponding data values in ydata, and let us suppose we want to find a
curve of best fit of the form y = a + bf(x) + cg(x) that most suitably describes the database (xi, yi);
then one way to accomplish this is by using the method of least squares. Here a, b, c are constants that
parametrize the model and f and g are some functions that we may choose to our liking depending on
the dataset and the complexity of the model we wish to design. The method of least squares involves
minimizing an objective function (known as the residual, r) with respect to the constant parameters

a, b, c, i.e. min
a,b,c

e(a, b, c) := min
a,b,c

r2(a, b, c) := min
a,b,c

n∑
i=1

(
yi − (a + bf(xi) + cg(xi))

)2. This demands

∂e
∂a = 0, ∂e∂b = 0 and ∂e

∂c = 0 from which a, b, c may be estimated. Note that even though we wish to
minimize the residual r, in essence this turns out to be the same as minimizing e = r2 and hence follows
the name- least squares.

The constraints ∂e
∂a = 0, ∂e∂b = 0 and ∂e

∂c = 0, upon simplification, reduces to

n∑
i=1

1
n∑
i=1

f(xi)
n∑
i=1

g(xi)

n∑
i=1

f(xi)
n∑
i=1

f2(xi)
n∑
i=1

f(xi)g(xi)

n∑
i=1

g(xi)
n∑
i=1

f(xi)g(xi)
n∑
i=1

g2(xi)


︸ ︷︷ ︸

Λ

ab
c


︸ ︷︷ ︸
α

=



n∑
i=1

yi

n∑
i=1

yif(xi)

n∑
i=1

yig(xi)


︸ ︷︷ ︸

χ

, (1)

whence the regression parameters are given by α = Λ−1χ as long as the matrix Λ is invertible.

Software Implementation

II. Least squares regression algorithm:

II.1. Importing and reading data: The file EnergyConsumptionMP 1996-2018.csv contains biennial
data for energy consumption in the state of Madhya Pradesh starting from 1996 through 2018. The file
has two columns, the first lists the year and the second enumerates the total energy consumption in that
year in MU (million units). Use the matlab function readtable to import the data into the indepen-
dent variable named xdata and the dependent variable ydata. Then use the matlab function plot to
map the energy consumption of the respective years in a scatter plot.

II.2. Constructing the Λ matrix, the χ vector and computing regression parameters: Consider the
curve of best fit to be of the form y = a + bx + cx2, i.e. f(x) = x and g(x) = x2. Use the matlab
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function handles to define f(x) and g(x) as follows: f = @(x)x and g = @(x)x.̂ 2. Then fill up
the entries of Λ and χ with the help of matlab functions sum and length. Compute α by using the
matlab function inv and eq (1).

II.3. Plotting regression curve: Overlay your curve of best fit (regression curve), using the regression
parameters we have estimated in the previous step and for all years from 1996 through 2018, on the
figure of II.1 using a different color. This is your nonlinear regression model using the method of least
squares. If we choose a line of best fit of the form y = a + bx, and repeat the above steps, we would
end up building a linear regression model instead. Thus the method of least squares can be used to build
both linear and nonlinear regression models each of which are linear in the regression parameters.

II.4. Plotting regression curve using matlab function lsqcurvefit: Explore the matlab inbuilt
function lsqcurvefit by typing doc lsqcurvefit on the command line. Re-plot the curve of
best fit for the same data and the same model y = a+bx+cx2 using the matlab function lsqcurvefit
and a suitable initial guess for the regression parameters. Also check out a very similar matlab function
lsqnonlin.

Questions

Answer the following questions.

1. Derive the matrix form of the equation for the least squares regression parameters given by eq (1).

2. Is the regression matrix Λ always invertible? If so, why? If not, explain the conditions when it is
not invertible.

3. Implement the algorithm described in the above section in matlab. Compare the performance of
your regression model with that of the matlab function lsqcurvefit. For II.4, use initial guess
for the regression parameters to be 1.0e + 08 ∗ [1, − 1.5, 3]. Repeat with an initial guess of
[1, 1, 1]. Comment on your observations.

4. Implement a linear regression model of the form y = a + bx and plot your predictions on a
separate figure.

5. Use this model to predict the total energy consumption in the state of Madhya Pradesh for the
years 1999, 2007 and 2021.

c© Dr. Amrik Sen, School of Mathematics, Thapar Institute of Engineering & Technology, Patiala.
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Fundamental Concepts of Markov Processes with Applications in
Weather Prediction and Random Walks

Objective of the experiment: To illustrate elementary concepts in modeling and simulation of Markov
processes.

Learning concepts: State space, Markov property, probability transition matrix, random number gen-
eration, random walks, stochastic simulations.

Theoretical Concepts

I. Introduction to Markov chains: A stochastic process
{
Xn

}
n≥0, n∈Z+ has Markov property if

Prob(Xn+1 = j
∣∣Xn = i,Xn−1 = in−1, ..., X0 = i0) = Prob(Xn+1 = j

∣∣Xn = i) =: pij .

Further, a Markov process is entirely characterized by the initial probability distribution of states µ(0),
and the probability transition matrix P. The superscript within parenthesis denotes the time stamp of the
process with (0) representing the initial state. The probability distribution of states at the instant n (i.e.
after n steps) is then given by µ(n) = µ(0)Pn. Moreover, the long time (or equilibrium) distribution of
states is prescribed by µeq = limn→∞ µ

(n). In the first part of this laboratory experiment, we will devise
a simple weather prediction model based on the Markov property and the above mentioned ideas.

II. Random walks: A random walk is a stochastic process where the state of the system at
any given instant moves to one of two possible states with equal probability. The state of the
system undergoes a slow gradual drift from the initial state and is phenomenologically related
to Brownian motion which has diverse applications in the natural sciences, economics and
engineering. The term random walk was first introduced by Karl Pearson in 1905.

In the second part of this laboratory experiment, we will investigate the behavior of a ran-
dom walk by considering the fate of a squirrel, hopping to the left or right with equal probability
at every instant of time, on a one-dimensional island that abruptly drops to pits (cliffs) on either
ends.

Part I: Weather Prediction

Consider that the weather on a given day stays the same as the previous day 75% of the
time and changes 25% of the time. For simplicity, let us only consider two weather states: viz.,
sunny and rainy. This weather model is a Markov process.

Software Implementation

III. Weather prediction algorithm:

ä define the initial probability distribution µ(0)

ä construct P

ä choose appropriate n as per model requirements

ä µ(n) = µ(0)Pn
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ä choose large n (say N )

ä compute µeq = µ(N)

Part II: Random walk on a lonely island

Consider a squirrel on a lonely one-dimensional island. At every instant of time, the squirrel
makes a jump to the left or to the right with equal probability. His decision on the direction of
his jump at any given instant is independent of all his previous such decisions; after all, he is

a happy go merry squirrel©. Let us say the one-dimensional island can be explored on an
n-point discrete lattice and that the squirrel commences his exploration at the position m units
from the left (indexed 0 in our convention). This is a classic random walk model. Our objective
is to investigate the following using the algorithm provided in the next section:

1. what is the probability that the squirrel eventually drifts to either end of the island and
perishes?

2. what is his life expectancy in terms of expected number of steps to death?

Software Implementation

IV. Random walk algorithm:

Pseudocode of the random walk algorithm:

INPUT: grid length, start pos.

initialise curr pos = start pos;
initialise num hops = 1;
while (curr pos > 0 && curr pos < grid length)

toss = rand(1);
if (toss < 0.5)

curr pos = curr pos - 1;
elseif (toss >= 0.5)

curr pos = curr pos + 1;
end
plot curr pos and record graphic frame;
num hops = num hops + 1;

end

OUTPUT: num hops, play recorded animation.

Some useful matlab commands: rand, stem, getframe, movie.
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Questions

Use the results of your code to answer the following questions.

Part I: Weather prediction

1. Starting with the current day’s weather as sunny, what is the probability that it will rain
day after tomorrow.

2. Starting with the same initial condition as above, what is the likely weather pattern after
100 days?

Part II: Random walk on a lonely island

1. Consider an island defined by a one-dimensional grid of length 100 units and the initial
position of the squirrel is 40 units from the left (tagged 0), create a simulation of the
squirrel hooping on the island over time.

2. Does the squirrel eventually fall of and die or does he just bounces on and off on the
island in a never ending fashion? Play your simulation and justify your answer.

3. Does your answer above depend on the size of the island or the initial position of the
squirrel? Repeat your experiment with different grid size and initial position to justify
your answer.

4. What is the life expectancy of the squirrel? Does your answer tally with the theoretically
predicted expected number of steps or is there a discrepancy? Explain why?

c© Dr. Amrik Sen, School of Mathematics, Thapar Institute of Engineering & Technology, Patiala.

Page 3 of 3



PCL 105
Stats. Methods & Algos.

Laboratory Experiment 4
Hidden Markov Models

Fall 2019, Thapar Institute
MTech (Engineering)

Construction of a Markovian Model using the Viterbi Algorithm
to predict Aerodynamic Control Laws of an Aircraft

Objective of the experiment: To build a computational stochastic model based on
Markov chains to predict the most likely sequence of events using the Viterbi algorithm.

Learning concepts: Conditional probability, Markov property, stochastic optimizaion,
dynamic programming.

Theoretical Concepts

I. Introduction & overview: We will consider a certain stochastic process with the
following state space of dimension K, S = {s1, s2, ..., sK}. Associated with this pro-
cess is a T dimensional observation set Y = {y1, y2, ..., yT } from amongst a possible
N dimensional observation space O = {o1, o2, ..., oN}. Note: yn ∈ O. Further, con-
sider an initial probability distribution given by Π = {π1, π2, ..., πK}. The probability
transition matrix P is a K ×K matrix with entries

pij(t) := probability of transitioning from state si to state sj = Prob(xt = sj
∣∣xt−1 = si),

and the emission matrix E is a K ×N matrix with entries

eij(t) := probability of observing oj from state si = Prob(yt = oj
∣∣xt−1 = si).

Succinctly, we will often write si ≡ i and oj ≡ j where it must be understood that
xt = i refers to the random variable xt taking the state si and yt = j refers to the random
variable yt being assigned the observable oj . The goal of the prediction algorithm is to
forecast the most likely sequence of states (events) X = {x1, x2, ..., xT }, xn ∈ S given
a prescribed sequence of observables Y, i.e. we need to compute

argmaxXProb(X
∣∣Y) = argmaxXProb(Y

∣∣X)Prob(X) = argmaxXProb(Y,X).

Here argmax
(
f(x)

)
returns the value of x at which the function f(x) attains its maxi-

mum.

For convenience, you may think of a state space S = {rainy, cloudy, sunny}, an ob-
servational space O = {walk, shop, clean} and a sequence of observations of activity
patterns of Billoo, the handyman as Y = {walk, walk, shop, walk, clean, walk, shop}.
The objective here is to find the most likely sequence of (hidden) states X corre-
sponding to the sequence of observables Y . E.g., one possible likely outcome may
be X = {sunny, sunny, cloudy, sunny, rainy, sunny, cloudy}. In this experiment, we
will implement the Viterbi algorithm to predict the most likely sequence of states that
corresponds to a sequence of associated observables assuming a Markovian stochastic
model (also known as the Hidden Markov Model (HMM)).
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II. Construction and essential calculations of the Viterbi algorithm:

In what follows, we will fix the notation Prob(X1 = x1) ≡ Prob(x1) ≡ π1. Note
that if T = 2, then

Prob(Y,X) ≡ Prob(y1, y2, x1, x2)

= Prob(y1, y2, x2
∣∣x1)Prob(x1)

= Prob(y1, y2
∣∣x2, x1)Prob(x2∣∣x1)Prob(x1)

= Prob(y1
∣∣y2, x2, x1)Prob(y2∣∣x2, x1)p12π1

= Prob(y1
∣∣x1, x2, y2)Prob(y2∣∣x2)p12π1

= Prob(y1
∣∣x1)Prob(y2∣∣x2)p12π1 (1)

In general, we have

Prob(Y,X) ≡ Prob(Y = y1, ..., yT ,X = x1, ..., xT )

= Prob(x1)︸ ︷︷ ︸
π1

Prob(y1
∣∣x1)Prob(x2∣∣x1)︸ ︷︷ ︸

p12

Prob(y2
∣∣x2) · · · Prob(yT ∣∣xT )

(2)

The Viterbi algorithm involves recursively computing the Viterbi entries Vk,t

Vk,t := maxProb
(
(y1, ..., yt), (x1, ..., xt = k)

)
= probability of the best (most likely) sequence of states (ending with state k, i.e. xt = k)

corresponding to the sequence of observables (y1, ..., yt).

II.1. Recursive computation of Vk,t:

By comparing the terms on the right hand side of eq. (2) and the definition of the
Viterbi entries above, we see that Vk,t can be obtained recursively and consequently us-
ing the argmax function, we can find the most likely sequence of events. The algorithm
includes calculation of the following three important terms.

• Vk,t = max
α∈S

(
Prob(yt = j

∣∣xt = k)pαkVα,t−1
)
= max

α∈S

(
ekjpαkVα,t−1

)
with Vk,1

set
= Prob(y1 = om

∣∣x1 = k)πk = ekmπk, and

• xT = argmax
α∈S

(
Vα,T

)
.

• xt−1 = back pointer(xt, t) = value of x used to compute Vk,t ∀t > 1.
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Software Implementation

Pseudocode of the Viterbi algorithm:

INPUT: S,Π,E,P,Y = {y1, y2, ..., yT }.

Part I: Initialization.
for each i of K states

viterbi prob(i,1) = πi ∗ eiy1
viterbi path(i,1) = 0

end for

Part II: Compute Viterbi probabilities and Viterbi path.
for each j of T-1 observations starting with T=2

for each i of K states
viterbi prob(i,j) = max

α∈S

(
eiyj ∗ pαi∗viterbi prob(α, j − 1)

)
viterbi path(i,j) = argmax

α∈S

(
eiyj ∗ pαi∗viterbi prob(α, j − 1)

)
end for

end for
xT = szT where zT := argmax

α∈S

(
viterbi prob(α, T )

)
The appearance of eij in the computation of viterbi path(i,j) is unnec-
essary because it is non-negative and independent of α (so you may choose to skip it).

Part III: Retracking the most likely path X.
for each j of T-1 observations from T to 2

xj−1 = szj−1 where zj−1 =viterbi path(zj , j)
end for

OUTPUT: X = {x1, x2, ..., xT }

III. Questions: Implement the above algorithm in MATLAB and use your program to
answer the following questions.

1. Consider there are only two specific types of weather states, viz., rainy, sunny.
Our friend Billoo, the handyman decides to either go walking, shopping or un-
dertake cleaning depending on the type of weather on a given day. Let us say
that we have recorded his daily chores over the past five days and observed that
he undertook the following sequence of activities on subsequent days: walking,
walking, shopping, walking, cleaning. Use the Markovian model explained above
to predict the weather for the last five days. Assume the initial weather distri-

Page 3 of 4



PCL 105
Stats. Methods & Algos.

Laboratory Experiment 4
Hidden Markov Models

Fall 2019, Thapar Institute
MTech (Engineering)

bution Π = {0.43, 0.57}, the probability transition matrix P =

(
0.2 0.8
0.4 0.6

)
,

where state 1 is rainy and state 2 is sunny, and the probability emission matrix

E =

(
0.2 0.4 0.4
0.3 0.25 0.45

)
, where the columns (observations) are labelled in order

of walking, shopping and cleaning, respectively.

2. Aircraft sensor data from the Airbus A330 is used to predict the flight charac-
teristics and accordingly modify control inputs. One such flight characteristic
is pitch up and pitch down motions (observables) measured by the angle of at-
tack sensors. Any error in the pitch measurements may inadvertently affect the
primary flight control laws (state variables) and have major consequences in the
aerodynamic performance of the plane. In any aircraft there are three primary
control laws, viz., normal, alternate and direct, each of which demand distinct
inputs by the pilot and the on-board flight computer system. The flight envelope
and failure protection modes are also distinctly different depending on the type of
control law governing the flight at any given instant, e.g., normal law may have
automated low-speed anti-stall protection whereas the same may not be available
while the aircraft is operated under direct law. Therefore, accurate real-time pre-
diction of the prevailing control law is essential for continuing safe flight and is
monitored carefully by the company at the Airbus engineering systems headquar-
ters. At a certain time, the company receives the following sequence of pitch
measurements at 5 minute intervals. Devise a model using the Viterbi algorithm
to predict the corresponding sequence of control laws that will likely be activated
during the same time instant.

Pitch data: ‘up’, ‘down’, ‘down’, ‘down’, ‘down’, ‘up’, ‘up’, ‘down’, ‘down’, ‘down’, ‘down’.

Consider the following probability transition matrix P and probability emission
matrix E that is available from the Airbus database.

P =

0.7 0.1 0.2
0.4 0.5 0.1
0.2 0.3 0.5

, E =

0.6 0.4
0.3 0.7
0.2 0.8

 and Π = {0.8, 0.1, 0.1}.

c© Dr. Amrik Sen, School of Mathematics, Thapar Institute of Engineering & Technology, Patiala.
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Analyzing Statistical Differences in Multi-Population Means using
ANOVA to prioritize Post Disaster Reconstruction Projects

Objective of the experiment: To investigate if there is any statistically significant difference in the
mean response scores of multiple construction managers across six different cities on issues relating to
the effectiveness of Post Disaster Reconstruction (PDR) projects.

Learning concepts: Analysis of Variance (ANOVA), difference of means, F distribution, decision
analytics for Post Disaster Reconstruction (PDR) projects.

Theoretical Concepts

I. Introduction & overview: The goal of this laboratory experiment is to highlight the issues and
challenges in Post Disaster Reconstruction (PDR) projects and to determine the significant differences
between the issues and challenges in different locations where PDR projects are carried out. As a chief
construction engineer of an international non-governmental organization, you are tasked with devising
an emergency strategy for tackling the issues concerning the efficient implementation of PDR projects.
Your decision making relies on an extensive database across six international cities1 where project en-
gineers have rated the most pressing issues that are responsible for delay in PDR projects. Your first
task (and the objective of this laboratory experiment) is to identify those issues that are common across
geographical locations and address them as a priority. In order to accomplish this, you are provided with
a database of responses by construction engineers from six different international cities. Construction
engineers who have worked in those cities in the past have rated the significance of the respective issues
on a scale of 1-10 with 1 being strongly disagree and 10 being strongly agree. The issues that will be
investigated are:

• shortage of technical staff,

• land ownership and related laws,

• funding and aid for PDR projects, and

• community participation in rebuilding efforts.

The ratings of the engineers on each of these challenges across cities are tabulated in the following
spreadsheet files:

PostDisasterReconstruction_ShortTechStaff.csv
PostDisasterReconstruction_LandOwnership.csv
PostDisasterReconstruction_Funding.csv
PostDisasterReconstruction_CommunityParticipation.csv

II. One-way ANOVA, difference of means and universal relevance of PDR issues:

Null hypothesis, H0 : µ1 = µ2 = · · · = µ6
Alternate hypothesis, H1 : not all means are equal.

The one-way analysis of variance (ANOVA) is used here to determine whether there are any statistically
significant differences between the mean rating score of the engineers stationed at six different cities
that constitute six independent (and unrelated) groups. In each group (city), there are six different

1Port-au-Prince (Haiti), Tacloban City (Philippines), Latur (India), New Orleans (USA), Kathmandu (Nepal) and Bagh City
(Pakistan).
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observations from six construction engineers who have been involved in PDR projects over the last many
years. For each of the above mentioned issues, you have to perform a one-way ANOVA calculation
and test if the data provided in the tables (in the spreadsheets) presents a statistical difference in the
mean rating of the construction engineers between the six different cities. This will reveal if the issues
plaguing the implementation of PDR projects is affected in an identical manner across the six different
cities around the world.

Once the issues that are universally relevant have been identified, then the total mean rating score
across all cities for a given issue should be computed and a decision on necessary corrective measure
should be taken if this grand mean is greater than 5 (on a scale of 10).

Sample data table: The entries in the spreadsheets are similar to the table shown below.

Rating (scale: 1-10, 1: strongly disagree, 10: strongly agree)
Cities Mgr1 Mgr2 Mgr3 Mgr4 Mgr5 Mgr6
Port-au-Prince (Haiti) y11 =3 y12 =2 y13 =9 y14 =8 y15 =9 y16 =9
Tacloban City y21 =5 y22 =9 y23 =10 y24 =5 y25 =8 y26 =9
Latur y31 =6 y32 =7 y33 =10 y34 =5 y35 =7 y36 =8
New Orleans y41 =8 y42 =9 y43 =9 y44 =8 y45 =2 y46 =8
Kathmandu y51 =3 y52 =8 y53 =7 y54 =10 y55 =10 y56 =4
Bagh City y61 =2 y62 =7 y63 =9 y64 =10 y65 =6 y66 =7

ANOVA table:

source degree of freedom sum of sqs. mean of sqs. Fcal

between groups dfB = t− 1 SSB MSB Fcal =
MSB
MSW

within groups dfW =
∑

i ni − t SSW MSW
total

∑
i ni − 1 = n− 1 TSS = SSB+SSW

Here number of groups = t = 6 and number of observations in group i = ni = 6 and n = 36.

Software Implementation

Use matlab to construct the one-way ANOVA table and implement the following algorithm.

⇒ Compute the entries of the ANOVA table. One-way ANOVA computation involves the following
calculations:

1. Compute Yi. =
∑ni

j=1 yij , Y.. =
∑

i,j yij .

2. Compute SSB =
∑

i
Y 2
i.
ni
− Y 2

..∑
i ni
, SSW =

∑
i,j y

2
ij −

∑
i
Y 2
i.
ni
, TSS = SSB + SSW .

3. Set MSB = SSB
t−1 and MSW = SSW∑

i n1−t .

4. Compute Fcal = MSB
MSW .

⇒ Next, compare Fcal and Ftab = Fα(dfB, dfW ) (Ftab is found from F−distribution table).

⇒ If Ftab > Fcal, then fail to reject H0 (i.e. possibly all means (mean rating values) are statistically
equal); else if Ftab < Fcal, then reject H0 (and abandon dwelling on the issue for the time being).

⇒ If Ftab > Fcal and if µ =
∑

i,j yij
n > 5.0, then the issue is universally relevant across cities and

demands corrective measures to successfully implement PDR projects.
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Questions

1. State the assumptions of one-way ANOVA. Comment if these assumptions seem reasonable in the
context of the PDR data provided here.

2. Implement the algorithm prescribed above in matlab. Specifically, write a matlab script to con-
struct and display the ANOVA table for each of the dataset provided in the .csv files.

3. Compute Ftab for the given problem from the F− distribution table corresponding to a level of
significance of test α = 0.01.

4. Based on the strategy prescribed in the algorithm, select and mention the issues that are universally
relevant across different cities and that need immediate redressal.

5. Mention at least two drawbacks of one-way ANOVA test.

c© Dr. Amrik Sen, School of Mathematics, Thapar Institute of Engineering & Technology, Patiala.
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Autoregressive Model of Time Series Data using
the Yule Walker Equations to forecast Employment Growth Statistics

Objective of the experiment: To estimate the order (lag), p̃ of an autoregressive (AR) process and
model a given time series data as an AR(p̃) process.

Learning concepts: Time series modeling, AR(p̃) process, autocorrelation and partial autocorrela-
tion functions, Yule Walker equations.

Theoretical Concepts

I. Introduction & overview: Autoregressive models are used for time series forecasting when the
underlying process is dependent (linearly) on values from previous time instants but may be offset by
random shocks. Consequently, the formal structure of such a process takes the form

Xt+1 = φ
(p)
1 Xt + φ

(p)
2 Xt−1 + ...+ φ(p)p Xt−p+1 + εt+1, (1)

where the φ(p)s are the AR coefficients of a p dimensional process and εt is Gaussian white noise that
prescribes the effects of random shocks. Here, the effect of the linear dependence on previous states
is significant up to lag p and truncated thereafter. We will consider a sample time series data that lists
total number of jobs filled in a public sector enterprise every month over many years. Our goal is to fit
an autoregressive (AR) model to this time series data of length N . This will essentially require us to
estimate the order (lag) of the AR process by using the Yule Walker equations.

II. Finding AR coefficients using the Yule Walker equations:

We begin by multiplying eq (1) with Xt and subsequently compute the expected value, 〈·〉, of the
terms in the resulting equation to obtain the following:

〈XtXt+1〉 =

p∑
j=1

φ
(p)
i 〈XtXt−j+1〉+���

��:0
〈Xtεt+1〉. (2)

The last term above cancels to zero because the process Xt is independent of and uncorrelated with the

random shocks εt. Upon division by (N−1), the equation reduces to c1 =
p∑

j=1
φ
(p)
j cj−1 which is the first

autocovariance function. Normalization by c0, gives the first autocorrelation function r1 =
p∑

j=1
φ
(p)
j rj−1.

Likewise, to compute the second autocorrelation function we multiply the terms in eq (1) with Xt−1 and

follow the same steps as above to obtain r2 =
p∑

j=1
φ
(p)
j rj−2. Similarly, the kth autocorrelation function

is rk =
p∑

j=1
φ
(p)
j rj−k. Putting this all together, we have the Yule Walker equations:

r1 = φ
(p)
1 r0 + φ

(p)
2 r1 + φ

(p)
3 r2 + · · ·+ φ(p)p rp−1,

r2 = φ
(p)
1 r1 + φ

(p)
2 r0 + φ

(p)
3 r1 + · · ·+ φ(p)p rp−2,

·
·

rp−1 = φ
(p)
1 rp−2 + φ

(p)
2 rp−3 + φ

(p)
3 rp−4 + · · ·+ φ(p)p r1,

rp = φ
(p)
1 rp−1 + φ

(p)
2 rp−2 + φ

(p)
3 rp−3 + · · ·+ φ(p)p r0.
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The above set of equations can be written succinctly in matrix form as follows:

Φ = R−1r, (3)

where Φ(p) =



φ
(p)
1

φ
(p)
2

·
·

φ
(p)
p−1
φ
(p)
p


, R =



r0 r1 r2 · · · rp−2 rp−1
r1 r0 r1 · · · rp−3 rp−2

·
·

rp−2 rp−3 rp−4 · · · r0 r1
rp−1 rp−2 rp−3 · · · r1 r0

 and r =



r1
r2
·
·

rp−1
rp

.

The matrix R is always invertible because it is full rank and symmetric and hence the Yule Walker
equations are well posed and can be used to solve for the unknown AR coefficients (Φ). Here the auto-
correlation functions (ACFs) are given by r. It must be noted that r0 := 1 and c−k = ck.

III. Computing partial autocorrelation functions and estimating order of AR model:

The correlation between Xt and Xt+h comprises of both direct and indirect dependencies. The
indirect dependency between Xt and Xt+h arises due to the linear dependency between Xt and Xt+1,
Xt+1 and Xt+2, Xt+2 and Xt+3, and so on, all the way through Xt+h−1 and Xt+h. The partial auto-
correlation functions (PACFs) prescribe the direct dependency between Xt and Xt+h with the effects of
all the intermediary variables, Xt+1 through Xt+h−1, removed. The PACFs, Ψ(p) are negative of the
last coefficients φ(k)k s computed using the Yule Walker equations for every lag (order) k starting with 1

through p i.e., Ψ(p) =



ψ
(p)
1

ψ
(p)
2

·
·

ψ
(p)
p−1
ψ
(p)
p


=



−φ(1)1

−φ(2)2

·
·

−φ(p−1)p−1
−φ(p)p


. Consequently, the following table prescribes a strat-

egy to estimate the order of various time series models using the ACFs and PACFs. Specifically, for the
AR model, the rapid (abrupt) decay of the PACFs prescribes the order of the model.

Model ACF
(
rh

)
PACF

(
ψh

)
AR(p̃) decays infinitely as rh

h→∞−−−→ 0 truncates abruptly as ψh = 0 ∀h > p̃

MA(q̃) truncates abruptly as rh = 0 ∀h > q̃ decays infinitely as ψh
h→∞−−−→ 0

ARMA(p̃, q̃) decays as AR(p̃) ∀h > q̃ decays as MA(q̃) ∀h > p̃

Software Implementation

IV. Construction of the AR(p̃) model:

The algorithm constitutes the following steps.

IV.1. Importing data and dimensions of Yule Walker system: Use the matlab function readtable
to import the tabular data from the spreadsheet (JOBS.csv). The table has two columns, viz., Month
and TotalFilledJobs. Plot the entries of the second column against the entries in the first column (or
simply in sequence) in blue and then plot, in the same figure, the mean subtracted entries of the sec-
ond column. Visually inspect the plotted mean subtracted time series data and check if it is periodic
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with period (p + 1). If so, use a system of p equations to construct the Yule Walker system (prescribed
by eq (3)), else use some arbitrarily large enough number (sayN/4) to construct the Yule Walker system.

IV.2. Computing AR coefficients using the Yule Walker equations: Here we will use two strategies:

• First, write your own matlab function, myArYule to compute Φ as prescribed by eq (3). The
input to your function should be the mean subtracted time series data and the dimension of the
Yule Walker system selected as above. The output of the function should be the AR coefficients,
Φ and the partial autocorrelation functions, Ψ.

• Second, use the matlab function aryule to compute the AR coefficients and the partial autocor-
relation functions. Compare the results of both these strategies for consistency.

IV.3. Select the order of the AR model using the partial autocorrelation functions: Practically, the
PACF is considered zero (at a 5% significance level) if the value of ψh falls within the critical region
defined by the upper and lower limits given by ±1.96/

√
N .1 In your software routine, plot the PACFs

in conjunction with the critical region set at 5% significance level. Finally, choose the order p̃ of the AR
model in such a way that ψh 6= 0 for h = p̃ but ψh = 0 ∀h > p̃.

Pseudocode of the myArYule algorithm:

INPUT: data, max order.

for current order from max order to 1
initialize R to identity matrix
compute ACFs r from data
for i from 1 to current order

k=1;
for j from i+1 to current order

R(i, j) = r(k)
k = k + 1

end
end

compute remaining entries of R by using symmetry of R
compute Φtemp = R−1 ∗ r
update Φtemp by concatenating 1 and Φtemp

if current order == max order
Φ = Φtemp

else

--- Are we having fun © or what? § ---
end
pacf(current order) = negative of last entry of Φtemp

end

OUTPUT: Φ, pacf.

1This approximation relies on the assumption that N > 30 and that the underlying process has finite second moment (finite
variance).
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Some useful matlab functions you may want to consider are: xcorr, eye, inv, aryule,
readtable, plot, subplot, xlabel, ylabel, length, stem, sqrt, title,
grid, xlim, hold on. Use the command doc <function name> to study more about them.

Questions

Answer the following questions.

1. Implement the algorithm of sec. IV. outlined above in matlab.

2. Estimate the order p̃ of the AR model for the given time series data in JOBS.csv.

3. Based on the AR coefficients computed by your matlab routine, comment whether the AR(p̃)
model has a stable solution. Explain your answer in detail.

4. Use this model to forecast the additional jobs filled each month in the year 2012 for months March
through December.

c© Dr. Amrik Sen, School of Mathematics, Thapar Institute of Engineering & Technology, Patiala.
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Multivariate Principal Component Analysis for Image Compression

Objective of the experiment: To investigate the efficacy of image compression using multivariate
principal component analysis.

Learning concepts: Covariance matrix, principal component analysis, linear algebra, image and data
compression.

Theoretical Concepts

I. Introduction & overview: Principal Component Analysis (PCA) is a technique used in multivari-
ate statistics to reduce the dimensions of a given problem and hence provides a way to encode the basic
features of a multivariate data (eg. an image) by using a few appropriate variables (dimensions). The
reduction in the representation of the dataset to a few important dimensions is carried forth by a suitable
linear transformation. Technically, this involves a change of basis in the representation of the given data
matrix. PCA de-correlates the original data by finding the directions in which the variance is maximized
and then utilizes these directions to find the new basis.

II. Data matrix, principal components & covariance matrix: Consider an m × n data matrix
X where the n columns are the samples (observations) and the m rows are the variables (dimensions)
such that for each k of the m dimensions, the n data points constitute a (row) vector x̃k with mean zero.

That is x̃k ←−
(
x̃k−

n∑
i=1

x̃k,i

n

)
. Formally, X =

 | | |
x1 x2 · · · xn

| | |

 =



x̃1

x̃2

·
·
·

x̃m

 represents the mean

subtracted data where each
|
xk

|
represents an m dimensional data point (vector) and there are n of them

corresponding to n samples, and each of x̃k =
(
x̃k,1 x̃k,2 ···x̃k,n

)
represents the n sample observations

(data points) of the kth dimension. The data is then transformed into a new representation Y (also an
m× n matrix) by a change of basis matrix P of dimensions m×m as follows:

Y = PX =



p1 · x1 p1 · x2 · · · p1 · xn

p2 · x1 p2 · x2 · · · p2 · xn

· · · · · ·
· · · · · ·
· · · · · ·

pm · x1 pm · x2 · · · pm · xn

 . (1)
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Here P =



−−−p1 −−−
−−−p2 −−−

·
·
·

− − −pm −−−

 where rows of P , represented here as − − −pk − −−, form the new

basis. In fact, the rows of P turn out to be the principal components. The covariance matrix of the mean
subtracted data is

CX =
1

n− 1
XXT =

1

n− 1



x̃1x̃
T
1 x̃1x̃

T
2 · · · x̃1x̃

T
m

x̃2x̃
T
1 x̃2x̃

T
2 · · · x̃2x̃

T
m

· · · · · ·
· · · · · ·
· · · · · ·

x̃mx̃T
1 x̃mx̃T

2 · · · x̃mx̃T
m

 . (2)

By construction, CX is a symmetric positive definite matrix of dimensions m × m. The off-diagonal
entries of a covariance matrix reveal how well correlated are two distinct variables (in this case, how
well correlated are two distinct dimensions). If two dimensions are significantly correlated, then per-
haps retaining both these dimensions is not necessary as they would provide redundant information.
This entails that the optimal representation of the data should be such that the off-diagonal terms of the
covariance matrix in that representational space must be zero. Further, this also underscores the impor-
tance of retaining those dimensions that lend themselves to exhibit the greatest variety of independent
and uncorrelated information inherent within the data (maximal variance presents richer information).
Therefore, the diagonal entries of the covariance matrix in the transformed space should be as large as
possible, especially for the important dimensions that are to be retained in the reduced (transformed)
representation of the data.

III. Linear transformation of the data and covariance matrix of transformed data: The ob-
jective here is to find a transformation P which transforms the data into an optimal representational space
using Y = PX . This is done by constructing the covariance matrix of the transformed data CY by

1. maximizing the diagonal entries of CY (maximizing variance of every dimension), and

2. minimizing the off-diagonal entries of CY (minimizing covariance between dimensions).

This means our objective is to find P that makes CY diagonal. Also, since the columns of P must form
the new basis, we must have that P is an orthonormal matrix (PP T = I).

By definition,

CY =
1

n− 1
Y Y T =

1

n− 1
(PX)(PX)T =

1

n− 1
(PX)(XTP T ) =

1

n− 1
P (XXT )P T = PSP T

where S = 1
n−1XXT is an m ×m symmetric positive definite matrix. Since every square symmetric

matrix is diagonalizable, we have S = EDET = 1
n−1XXT where E is an m×m orthonormal matrix

whose columns are the eigenvectors of S and D is a diagonal matrix with the respective eigenvalues
along the diagonal. Now, if we choose the rows of P to be the eigenvectors of S whence P = ET , then
from above we find that CY = PSP T = ET (EDET )E = D because ETE = PP T = I as stated
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above. Summarizing, the essence of all this is, if we choose P = ET (choose the principal components
or rows of P as the eigenvectors of XXT ), then we recover CY in the desired diagonal form.

IV. Singular Value Decomposition to find eigen-decomposition of 1
n−1XXT : In linear alge-

bra, there is a well known methodology to compute the eigenvalues and eigenvectors of ZTZ by using
the Singular Value Decomposition (SVD) of Z = UΣV T where Z := XT

√
n−1 , Σ is diagonal with the sin-

gular values of Z, and U, V are orthornormal matrices. The non-zero singular values of Z are the square
roots of the nonzero eigenvalues of ZTZ = CX . So ZTZ = (UΣV T )T (UΣV T ) = V (ΣTΣ)V T .
So ZTZ is similar to ΣTΣ and it has the same eigenvalues as that of ΣTΣ. Therefore, the non-zero
singular values of Z, upon rearrangement in descending order along the diagonal of Σ and upon
squaring, give us the eigenvalues of ZTZ (or equivalently the eigenvalues of S = 1

n−1XXT ), also in
descending order. Further, the columns of V , rearranged in accordance with the respective singular
values of Z, are the same as the columns of E (rearranged) and constitute the rows of P which are
the principal components. Therefore, P = ET = V T .

V. Recovery of original data from transformed space:
Since Y = PX = V TX , X = V Y returns the original data X from the transformed data Y .

VI. Image (data) compression: Suppose that before projecting the data using the relation, Y =

V TX , we were to truncate the matrix, V so that we kept only the first r < m columns. We would thus
have a matrix of dimensions m × r. The projection Ŷ = V̂ TX is the new reduced (transformed) data
with dimensions r × n. Suppose that we then wished to transform this data back to the original basis
by computing X̂ = V̂ Ŷ , we would recover the dimensions of X because X̂ also has dimensions m× n
even though X̂ 6= X .

The matrices, X and X̂ are of the same dimensions, but they are not the same matrix, since we
truncated the matrix of principal components V in order to obtain X̂ . It is therefore reasonable to con-
clude that the matrix, X̂ has in some sense, less information in it than the matrix X . Of course, in
terms of memory allocation on a computer, this is certainly not the case since both matrices have the
same dimensions and would therefore allot the same amount of memory. However, the matrix, X̂ can
be computed as the product of two smaller matrices (V̂ and Ŷ ). This, together with the fact that the
essential information in the matrix is captured by the first few principal components suggests a possible
method for image compression.

VI.1. Compression ratio: Let us suppose we have an image of dimensions 512 × 512 and we want to
reduce it to dimensions 512× 40. So V̂ and Ŷ have dimensions 512× 40 and 40× 512 respectively. In
addition to this, we have another vector of size 512× 1 that stores the means from the mean-subtraction
step. Therefore, we have reduced the number of columns required from 512 to 40 + 40 + 1 = 81.
This gives us a compression ratio of 512 : 81 or approximately 6.33 : 1. In the exercises below, you
will be asked to investigate different compression ratios and a qualitative assessment of the amount of
information retained.
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Software Implementation

Pseudocode of image compression by PCA:

INPUT: image, numPCs.

ä store image as a matrix % use matlab command imread

ä find X , mean subtracted data matrix % use matlab commands mean and repmat

ä construct Z := 1√
n−1X

T % dimension of X is m× n

ä construct covariance matrix CX = ZTZ

ä compute SVD of Z: [U S V ] = svd(Z) % S stores singular values of Z

ä compute eigenvalues of ZTZ by squaring singular values of Z

ä store top numPCs eigenvectors: V̂ = V (:, 1 : numPCs)

ä store transformed reduced data in Ŷ = V̂ TX

ä compute compression ratio: ratio = n
2(numPCs)+1

ä convert image data in original space: X̂ = V̂ Ŷ

ä add the subtracted means to X̂ to construct compressed image

OUTPUT: compressed image, ratio.

† Lines in green to the right of % symbol are comments, not executable lines of code.

Questions

Answer the following questions.

1. Use the image in the file butterfly2.jpg and apply the image compression algorithm given
above to compress the given image by considering the top 40 principal components (PCs). Plot
the top 40 eigenvalues as a bar graph. What is the compression ratio?

2. Repeat the above experiment by using only top 5 PCs. What is the compression ratio?

3. What can you conclude qualitatively from the above two experiments?

4. What happens if you replace [U S V ] = svd(Z) in your code by [U S V ] = svd(CX)? Why?

c© Dr. Amrik Sen, School of Mathematics, Thapar Institute of Engineering & Technology, Patiala.
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