Linear Ordinary Differential Equation with Constant Coefficients

Amrik Sen

Engineering Mathematics in Action: FM112

$$
10^{\text {th }} \text { January, } 2022
$$

Lecture Plan

Topic: Solving linear differential eqs. with constant coefficients

- Conceptual introduction
(2) Solution technique via examples
(3) Ground work for harder problems

Form of Linear ODE w/ const. coeff.: $\mathscr{L} y(x)=0$

$$
\begin{align*}
\frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots \ldots . .+a_{1} \frac{d y}{d x}+a_{0} y & =0 \tag{1}\\
y^{(n)}+a_{n-1} y^{(n-1)}+\ldots \ldots . .+a_{1} y^{\prime}+a_{0} y & =0 \tag{2}
\end{align*}
$$

$\mathscr{L}:=a_{0}+a_{1} \frac{d}{d x}+\ldots . . .+a_{n-1} \frac{d^{n-1}}{d x^{n-1}}+\frac{d^{n}}{d x^{n}}$ is the linear differential operator.

Solution form

Seek a solution of the form $y(x)=e^{r x}$ (Why?)
$\mathscr{L}\left(e^{r x}\right)=\mathscr{P}(r) e^{r x}$, where $\mathscr{P}(r)=r^{n}+a_{n-1} r^{n-1}+\ldots+a_{1} r+a_{0}$.

Characteristic equation

$$
\mathscr{P}(r)=r^{n}+a_{n-1} r^{n-1}+\ldots+a_{1} r+a_{0}=0
$$

Solution set depends on the nature of roots of characteristic eq.

(1) n distinct real roots: $y(x)=c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}+\ldots \ldots .+c_{n} e^{r_{n} x}$
(2) all real but some multiple roots: eg. $m<=n$ multiple roots $r=r_{0}$, remaining roots are distinct; then
$y(x)=\left(c_{1}+c_{2} x+\ldots+c_{m} x^{m-1}\right) e^{r_{0} x}+d_{1} e^{r_{1} x}+\ldots .+d_{n-m} e^{r_{(n-m)} x}$
Thought exercise: justify why above is true?
hint: $y=u(x) e^{r_{0} x}$.
(3) complex roots:
$y=e^{\alpha x}\left(c_{1} e^{i \beta x}+c_{2} e^{-i \beta x}\right)+$ linear combination of real solutions
For repeated complex roots, follow the prescription in (2).

Example: ODEs with constant coeff. (distinct real roots)

Question: Solve the ODE $\frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}+6 y=0$ with initial conditions $y(0)=1,\left.\frac{d y}{d t}\right|_{t=0}=0$.

Example: ODEs with constant coeff. (distinct real roots)

Question: Solve the ODE $\frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}+6 y=0$ with initial
conditions $y(0)=1,\left.\frac{d y}{d t}\right|_{t=0}=0$.
Solution: Characteristic equation:
$r^{2}+5 r+6=0 \Longrightarrow(r+2)(r+3)=0$ whence $r_{1,2}=-2,-3$.

Example: ODEs with constant coeff. (distinct real roots)

Question: Solve the ODE $\frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}+6 y=0$ with initial
conditions $y(0)=1,\left.\frac{d y}{d t}\right|_{t=0}=0$.
Solution: Characteristic equation:
$r^{2}+5 r+6=0 \Longrightarrow(r+2)(r+3)=0$ whence $r_{1,2}=-2,-3$. $y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t}$.

Example: ODEs with constant coeff. (distinct real roots)

Question: Solve the ODE $\frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}+6 y=0$ with initial
conditions $y(0)=1,\left.\frac{d y}{d t}\right|_{t=0}=0$.
Solution: Characteristic equation:
$r^{2}+5 r+6=0 \Longrightarrow(r+2)(r+3)=0$ whence $r_{1,2}=-2,-3$. $y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t}$. Now apply $y(0)=1$ to obtain $c_{1}+c_{2}=1$; and $y^{\prime}(0)=0$ to obtain $-2 c_{1}-3 c_{2}=0$.

Example: ODEs with constant coeff. (distinct real roots)

Question: Solve the ODE $\frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}+6 y=0$ with initial
conditions $y(0)=1,\left.\frac{d y}{d t}\right|_{t=0}=0$.
Solution: Characteristic equation:
$r^{2}+5 r+6=0 \Longrightarrow(r+2)(r+3)=0$ whence $r_{1,2}=-2,-3$. $y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t}$. Now apply $y(0)=1$ to obtain $c_{1}+c_{2}=1$; and $y^{\prime}(0)=0$ to obtain $-2 c_{1}-3 c_{2}=0$. This gives $c_{1}=3$ and $c_{2}=-2$.

Example: ODEs with constant coeff. (distinct real roots)

Question: Solve the ODE $\frac{d^{2} y}{d t^{2}}+5 \frac{d y}{d t}+6 y=0$ with initial
conditions $y(0)=1,\left.\frac{d y}{d t}\right|_{t=0}=0$.
Solution: Characteristic equation:
$r^{2}+5 r+6=0 \Longrightarrow(r+2)(r+3)=0$ whence $r_{1,2}=-2,-3$.
$y(t)=c_{1} e^{-2 t}+c_{2} e^{-3 t}$. Now apply $y(0)=1$ to obtain $c_{1}+c_{2}=1$; and $y^{\prime}(0)=0$ to obtain $-2 c_{1}-3 c_{2}=0$. This gives $c_{1}=3$ and $c_{2}=-2$.
Thus $y(t)=3 e^{-2 t}-2 e^{-3 t}$.

Example: ODEs with constant coeff. (repeated real roots)

Question: Solve the ODE $y^{\prime \prime}-4 y^{\prime}+4 y=0$ with initial conditions $y(0)=1, y^{\prime}(0)=1$.

Example: ODEs with constant coeff. (repeated real roots)

Question: Solve the ODE $y^{\prime \prime}-4 y^{\prime}+4 y=0$ with initial conditions $y(0)=1, y^{\prime}(0)=1$.
Solution: Characteristic equation: $r^{2}-4 r+4=0 \Longrightarrow(r-2)^{2}=0$
i.e. double root: $r=2$.

Example: ODEs with constant coeff. (repeated real roots)

Question: Solve the ODE $y^{\prime \prime}-4 y^{\prime}+4 y=0$ with initial conditions $y(0)=1, y^{\prime}(0)=1$.
Solution: Characteristic equation: $r^{2}-4 r+4=0 \Longrightarrow(r-2)^{2}=0$
i.e. double root: $r=2$.
$y(t)=c_{1} e^{2 t}+c_{2} t e^{2 t}$.

Example: ODEs with constant coeff. (repeated real roots)

Question: Solve the ODE $y^{\prime \prime}-4 y^{\prime}+4 y=0$ with initial conditions $y(0)=1, y^{\prime}(0)=1$.
Solution: Characteristic equation: $r^{2}-4 r+4=0 \Longrightarrow(r-2)^{2}=0$
i.e. double root: $r=2$.
$y(t)=c_{1} e^{2 t}+c_{2} t e^{2 t}$.
Now apply initial conditions to get: $c_{1}=1, c_{2}=-1$.

Example: ODEs with constant coeff. (repeated real roots)

Question: Solve the ODE $y^{\prime \prime}-4 y^{\prime}+4 y=0$ with initial conditions $y(0)=1, y^{\prime}(0)=1$.
Solution: Characteristic equation: $r^{2}-4 r+4=0 \Longrightarrow(r-2)^{2}=0$
i.e. double root: $r=2$.
$y(t)=c_{1} e^{2 t}+c_{2} t e^{2 t}$.
Now apply initial conditions to get: $c_{1}=1, c_{2}=-1$.
Thus $y(t)=e^{2 t}-t e^{2 t}$.

Example: ODEs with constant coeff. (repeated real roots)

Question: Solve the ODE $y^{(v)}+3 y^{(i v)}+3 y^{\prime \prime \prime}+y^{\prime \prime}=0$ with some appropriate initial conditions (how many??).

Example: ODEs with constant coeff. (repeated real roots)

Question: Solve the ODE $y^{(v)}+3 y^{(i v)}+3 y^{\prime \prime \prime}+y^{\prime \prime}=0$ with some appropriate initial conditions (how many??).
Solution: Characteristic equation:
$r^{5}+3 r^{4}+3 r^{3}+r^{2}=(r+1)^{3} r^{2}=0$ implies the roots are:
$r=-1$ (triple root) and $r=0$ (double root).

Example: ODEs with constant coeff. (repeated real roots)

Question: Solve the ODE $y^{(v)}+3 y^{(i v)}+3 y^{\prime \prime \prime}+y^{\prime \prime}=0$ with some appropriate initial conditions (how many??).
Solution: Characteristic equation:
$r^{5}+3 r^{4}+3 r^{3}+r^{2}=(r+1)^{3} r^{2}=0$ implies the roots are:
$r=-1$ (triple root) and $r=0$ (double root).
The solution will be of the form:
$y(t)=\left(c_{1}+c_{2} t+c_{3} t^{2}\right) e^{-t}+\left(c_{4}+c_{5} t\right) \ldots$

HW: complex roots

Question: Solve the ODE $\frac{d^{4} y}{d t^{4}}+8 \frac{d^{2} y}{d t^{2}}+16 y=0$ with some appropriate initial conditions.

You may leave your answer in terms of constants of the problem.

Example: solving ODE with const. coeff.

Problem:

$$
\begin{equation*}
\varepsilon y^{\prime \prime}+y=0 ; \quad y(0)=0, y(1)=1 \tag{3}
\end{equation*}
$$

where, for now, ε is a constant.
Solution: Identify that the linear ODE has constant coefficients. Next, write the characteristic eq.:

$$
\begin{equation*}
r^{2}+\frac{1}{\varepsilon}=0 \tag{4}
\end{equation*}
$$

Roots: $r= \pm \frac{i}{\sqrt{\varepsilon}}$. Therefore, $y(x)=c_{1} e^{\frac{i}{\sqrt{\varepsilon}} x}+c_{2} e^{\frac{-i}{\sqrt{\varepsilon}} x}$.
Then, apply boundary conditions:
$y(0)=0 \Longrightarrow c_{1}=-c_{2}=c, \quad y(1)=1 \Longrightarrow c=\frac{1}{2 \sin (1 / \sqrt{\varepsilon})}$.
Finally, $y(x)=\frac{\sin (x / \sqrt{\varepsilon})}{\sin (1 / \sqrt{\varepsilon})}$

Behavior of $y(x)=\frac{\sin (x / \sqrt{\varepsilon})}{\sin (1 / \sqrt{\varepsilon})}$ as $\varepsilon \rightarrow 0^{+}$

Check: $\varepsilon=1$ gives $y \sim \sin x$

Figure: $\varepsilon=1.0$

Behavior of $y(x)=\frac{\sin (x / \sqrt{\varepsilon})}{\sin (1 / \sqrt{\varepsilon})}$ as $\varepsilon \rightarrow 0^{+}$

Figure: $\varepsilon=0.0001$

Behavior of $y(x)=\frac{\sin (x / \sqrt{\varepsilon})}{\sin (1 / \sqrt{\varepsilon})}$ as $\varepsilon \rightarrow 0^{+}$

Figure: $\varepsilon=0.0001$

For $\varepsilon=0.0001$, we get rapid oscillations,
i.e. $y(x)$ exhibits discontinuity along x.

Singular Perturbation Problems: (a prelude to advanced mathematics for higher semesters)

Some options:

- Since $\varepsilon \rightarrow 0^{+}$, ignore terms comprising ε ? Thus, the ODE $\varepsilon y^{\prime \prime}+y=0$ becomes $y=0$. Clearly, $\mathrm{y}(1)=1$ contradicts $\mathrm{y}(\mathrm{x})=0$. BAD OPTION!
(2) WKB analysis: Seek solutions of the form

$$
\begin{equation*}
y(x) \sim e^{\frac{1}{\delta} \sum_{n=0}^{\infty} \delta^{n} S_{n}(x)}, \quad \delta \rightarrow 0 \tag{5}
\end{equation*}
$$

Using (5) in $\varepsilon y^{\prime \prime}+y=0$, we obtain a hierarchy of closed differential equations for $S_{n}(x)$, solvable at every order of ε, to construct the asymptotic solution $y(x)$.

