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Gauss-Seidel Method

The Gauss-Seidel Method

Looking at the Jacobi Method

@ A possible improvement to the Jacobi Algorithm can be seen by
re-considering

n

1 - .
Xi(k):_ Z(—a,-jxj(k 1))-i-b,- , fori=1,2,....n
ajj =
#i

v
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The Gauss-Seidel Method

Looking at the Jacobi Method

@ A possible improvement to the Jacobi Algorithm can be seen by
re-considering

n

1 - .
Xi(k):_ Z(—a,-/xj(k 1))-q-b,- ., fori=1,2,....n
ajj =
j#i

@ The components of x(*~1) are used to compute all the
components x*) of x(¥).

v
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The Gauss-Seidel Method

Looking at the Jacobi Method

@ A possible improvement to the Jacobi Algorithm can be seen by
re-considering

n

1 - .
Xi(k):_ Z(—a,-/xj(k 1))-q-b,- ., fori=1,2,....n
ajj =
j#i

@ The components of x(*~1) are used to compute all the
components x*) of x(¥).

@ But, for i > 1, the components x*), ... x*) of x(¥) have already

been computed and are expected to be better approximations to

- — k—1
the actual solutions xq, ..., x;_; than are x1(k 1), .. ,x,(_1 ),

v
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Gauss-Seidel Method

The Gauss-Seidel Method

Instead of using

1 | < _ )
x,.(k)zg > <_a,-jxj(k 1)>+b,- ., fori=1,2,....n
1] ]:1
J#I

it seems reasonable, then, to compute x,(k) using these most recently
calculated values.
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The Gauss-Seidel Method

Instead of using

1 | < _ )
x,.(")zg > <_a,-jxj(k 1)>+b,- ., fori=1,2,....n
1] ]:1
J#I

it seems reasonable, then, to compute x,(k) using these most recently

calculated values. )
The Gauss-Seidel lterative Technique
K 1 - K L k—1
X = 2 =Y (@) = Y (@) + by
1l ) P
Jj=1 j=i+1

foreachi=1,2,...,n.

v
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Gauss-Seidel Method

The Gauss-Seidel Method

Use the Gauss-Seidel iterative technique to find approximate solutions
to

10x1 — Xo+ 2X3 =6
X1 +11x — x3+3x4 =25
2xy —  Xo+ 10x3 — X4:—117

3o — Xx3+8x4 =15
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to

10x1 — Xo+ 2X3 =6
X1 +11x — x3+3x4 =25
2xy —  Xo+ 10x3 — X4:—117

3o — Xx3+8x4 =15
starting with x = (0,0, 0,0)!
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The Gauss-Seidel Method

Use the Gauss-Seidel iterative technique to find approximate solutions
to

10x1 — Xo+ 2X3 =6
X1 +11x — x3+3x4 =25
2xy —  Xo+ 10x3 — X4:—117

3o — Xx3+8x4 =15
starting with x = (0, 0,0,0)! and iterating until

||x(k) _ x(k—1)||OO

1 -3
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Gauss-Seidel Method

The Gauss-Seidel Method

Use the Gauss-Seidel iterative technique to find approximate solutions
to

10x1 — Xo+ 2X3 =6
X1 +11x — x3+3x4 =25
2xy —  Xo+ 10x3 — X4:—117

3o — Xx3+8x4 =15
starting with x = (0, 0,0,0)! and iterating until

||x(k) _ x(k—1)||OO

1 -3
w0

Note: The solution x = (1, 2, —1, 1)! was approximated by Jacobi’s
method in an earlier example.

v
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Gauss-Seidel Method

The Gauss-Seidel Method

Solution (1/3)

For the Gauss-Seidel method we write the system, for each

k=1,2,...as
(k) _ A k= T (k=) 3
X = 10x2 5X3 —|-5
w_ 1 A k1) 3 k-1, 25
EEEETI METRE EICHET
k 1 k 1 k 1 k—1 11
6= gn g MK
(k) _ 3 (k) 1. k) 15

Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods I R L Burden & J D Faires 7138



Gauss-Seidel Method

The Gauss-Seidel Method

Solution (2/3)

When x(© = (0, 0, 0, 0)!, we have
x(1) = (0.6000, 2.3272, —0.9873, 0.8789).
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Gauss-Seidel Method

The Gauss-Seidel Method

Solution (2/3)

When x(© = (0, 0, 0, 0)!, we have
x(M) = (0.6000, 2.3272, —0.9873, 0.8789)’. Subsequent iterations give
the values in the following table:

k 0 1 2 3 4 5

x) 00000 06000 1.030 1.0065 1.0009  1.0001
x 0.0000 23272 2037 20036 2.0003 2.0000
x$) 0.0000 -0.9873 -1.014 -1.0025 -1.0003 —1.0000
x{) 00000 08789 0984 09983 09999  1.0000
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Gauss-Seidel Method

The Gauss-Seidel Method

Because
x®) — x|, 0.0008

= =4x107*
G| 2000

x(®) is accepted as a reasonable approximation to the solution.
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Gauss-Seidel Method

The Gauss-Seidel Method

Solution (3/3)

Because
x®) — x|, 0.0008

= =4x107*
G| 2000

x(®) is accepted as a reasonable approximation to the solution.

Note that, in an earlier example, Jacobi’s method required twice as
many iterations for the same accuracy.
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Gauss-Seidel Method

The Gauss-Seidel Method: Matrix Form

Re-Writing the Equations

To write the Gauss-Seidel method in matrix form,
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Gauss-Seidel Method

The Gauss-Seidel Method: Matrix Form

Re-Writing the Equations

To write the Gauss-Seidel method in matrix form, multiply both sides of

i—1 n
k 1 k k—1
X = E =Y (@) = Y (@) + by
J=1 J=i+1

by a; and collect all kth iterate terms,
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Gauss-Seidel Method

The Gauss-Seidel Method: Matrix Form

Re-Writing the Equations

To write the Gauss-Seidel method in matrix form, multiply both sides of

i—1 n
k 1 k k—1
X = E =Y (@) = Y (@) + by
J=1 J=i+1

by a; and collect all kth iterate terms, to give

k k k k—1 k—1
a,-1x1( ) a4 a,'gXé ) S ooo o a,-,-x,-( ) = —3/7/+1Xi(+1 ) — a,-,,x,(, ) + b;

foreachi=1,2,...,n.
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Gauss-Seidel Method

The Gauss-Seidel Method: Matrix Form

Re-Writing the Equations (Cont'd)

Writing all n equations gives

auwik) = —aurék_l) - alszék_l) — o — a4y
a21$§k) + azzmék) = —02390§,k_1) — o — a4 by
anlxgk) + aangk) +ooeet annmﬁLk) = bn
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Gauss-Seidel Method

The Gauss-Seidel Method: Matrix Form

Re-Writing the Equations (Cont'd)
Writing all n equations gives

auwik) = —aurék_l) - alszék_l) — = alnmgk_l) -+ by
a21$§k) + azzmék) = —02390§,k_1) — e —agaad™V 4 by
(k) (k) (k)

I
A
3

Gn1Tq +  Gn2Ty’ + -+ Gnpn

With the definitions of D, L, and U given previously, we have the
Gauss-Seidel method represented by

(D — L)x*) = uxk-1 4 p

V.
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The Gauss-Seidel Method: Matrix Form

(D — L)x® = yxtk=1 1 p

S

Re-Writing the Equations (Cont'd)
Solving for x(%) finally gives

x® = (D - L)"'Ux*k=) + (D~ L)"'b, foreachk =1,2,...
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The Gauss-Seidel Method: Matrix Form

(D — L)x® = yxtk=1 1 p

S

Re-Writing the Equations (Cont'd)

Solving for x(%) finally gives
x¥) = (D - L)""Ux*Y 1 (D-L)""b, foreachk=1,2,...

Letting Ty = (D — L)~'U and ¢y = (D — L)~ 'b, gives the Gauss-Seidel
technique the form
xK) = Tox(=1) 4 ¢,
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Gauss-Seidel Method

The Gauss-Seidel Method: Matrix Form

(D — L)x®) = yxk=1) 1 p ]

Re-Writing the Equations (Cont'd)
Solving for x(%) finally gives

x® = (D - L)"'Ux*k=) + (D~ L)"'b, foreachk =1,2,...

Letting Ty = (D — L)~'U and ¢y = (D — L)~ 'b, gives the Gauss-Seidel
technique the form
xK) = Tox(=1) 4 ¢,

For the lower-triangular matrix D — L to be nonsingular, it is necessary
and sufficient that a; # 0, foreach i =1,2,...,n.
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Gauss-Seidel Algorithm

Outline

9 The Gauss-Seidel Algorithm
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Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm (1/2)

To solve Ax = b given an initial approximation x(®): |
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Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm (1/2)

To solve Ax = b given an initial approximation x(®): J

INPUT the number of equations and unknowns n;
the entries a;;, 1 </, j < n of the matrix A;
the entries b;, 1 < i < nof b;
the entries XO;, 1 < i < n of XO = x(9);
tolerance TOL;
maximum number of iterations N.

Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods I R L Burden & J D Faires 14/38



Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm (1/2)

To solve Ax = b given an initial approximation x(®): J

INPUT the number of equations and unknowns n;
the entries a;;, 1 </, j < n of the matrix A;
the entries b;, 1 < i < nof b;
the entries XO;, 1 < i < n of XO = x(9);
tolerance TOL;
maximum number of iterations N.

OUTPUT the approximate solution xi, ..., X, or a message
that the number of iterations was exceeded.
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Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm (2/2)

Step1 Setk =1
Step 2 While (k < N) do Steps 3-6:

v
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Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm (2/2)

Step1 Setk =1
Step 2 While (k < N) do Steps 3-6:

Step3 Fori=1,...,n

i—1 n
= j=it1

v
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Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm (2/2)

Step1 Setk =1
Step 2 While (k < N) do Steps 3-6:

Step3 Fori=1,...,n

—1 n
1 I
setx,-:—__ —Za;ij— Z a,-,-XO,-+b,-
= j=it1

Step 4 If ||[x — XO|| < TOL then OUTPUT (xq,...,Xn)
(The procedure was successful)
STOP

v
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Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm (2/2)

Step1 Setk =1
Step 2 While (k < N) do Steps 3-6:

Step3 Fori=1,...,n

i—1 n
set xj = ol Z ajjXj — Z a,-,-XO,- + b;
= j=it1

Step 4 If ||[x — XO|| < TOL then OUTPUT (xq,...,Xn)
(The procedure was successful)
STOP
Step5 Setk =k + 1

v
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Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm (2/2)

Step1 Setk =1
Step 2 While (k < N) do Steps 3-6:

Step3 Fori=1,...,n

i—1 n
set xj = ol Z ajjXj — Z a,-,-XO,- + b;
= j=it1

Step 4 If ||[x — XO|| < TOL then OUTPUT (xq,...,Xn)
(The procedure was successful)
STOP
Step5 Setk =k + 1
Step6 Fori=1,...,nset XO; = x;

v
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Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm (2/2)

Step1 Setk =1
Step 2 While (k < N) do Steps 3-6:

Step3 Fori=1,...,n

n
set xj = — —Za;ij— Z a,-,-XOj+b,-
j=1 j=i+1
Step 4 If ||[x — XO|| < TOL then OUTPUT (xq,...,Xn)
(The procedure was successful)
STOP
Step5 Setk =k + 1
Step6 Fori=1,...,nset XO; = x;

Step 7 OUTPUT (‘Maximum number of iterations exceeded’)
STOP (The procedure was unsuccessful)

v
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Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm

Comments on the Algorithm

@ Step 3 of the algorithm requires that a;; # 0, for each
i=1,2,...,n.

v
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Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm

Comments on the Algorithm

@ Step 3 of the algorithm requires that a;; # 0, for each
i=1,2,...,n. If one of the a; entries is 0 and the system is
nonsingular, a reordering of the equations can be performed so
that no a; = 0.
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Gauss-Seidel lterative Algorithm

Comments on the Algorithm

@ Step 3 of the algorithm requires that a;; # 0, for each
i=1,2,...,n. If one of the a; entries is 0 and the system is
nonsingular, a reordering of the equations can be performed so
that no a; = 0.

@ To speed convergence, the equations should be arranged so that
aji is as large as possible.

v
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Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm

Comments on the Algorithm

@ Step 3 of the algorithm requires that a;; # 0, for each
i=1,2,...,n. If one of the a; entries is 0 and the system is
nonsingular, a reordering of the equations can be performed so
that no a; = 0.

@ To speed convergence, the equations should be arranged so that
aji is as large as possible.

@ Another possible stopping criterion in Step 4 is to iterate until

x4 — x|
FQI

is smaller than some prescribed tolerance.

v
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Gauss-Seidel Algorithm

Gauss-Seidel lterative Algorithm

Comments on the Algorithm

@ Step 3 of the algorithm requires that a;; # 0, for each
i=1,2,...,n. If one of the a; entries is 0 and the system is
nonsingular, a reordering of the equations can be performed so
that no a; = 0.

@ To speed convergence, the equations should be arranged so that
aji is as large as possible.

@ Another possible stopping criterion in Step 4 is to iterate until
[ —x*Dj
x|

is smaller than some prescribed tolerance.

@ For this purpose, any convenient norm can be used, the usual
being the I, norm.

v
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Convergence Results

Outline

e Convergence Results for General Iteration Methods
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Convergence Results

Convergence Results for General Iteration Methods

Introduction

@ To study the convergence of general iteration techniques, we need
to analyze the formula

x®) = Tx(k=1) + ¢, foreachk=1,2,...

where x(9) is arbitrary.

@ The following lemma and the earlier on convergent
matrices provide the key for this study.
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Convergence Results

Convergence Results for General Iteration Methods

If the spectral radius satisfies p(T) < 1, then (/ — T)~" exists, and

(I-T) "' =1+T+T?+... =T
j=0
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Convergence Results

Convergence Results for General Iteration Methods

If the spectral radius satisfies p(T) < 1, then (/ — T)~" exists, and

(I-T) "' =1+T+T?+... =T

Proof (1/2)

@ Because Tx = \x is true precisely when (/ — T)x = (1 — A\)x, we
have \ as an eigenvalue of T precisely when 1 — X is an
eigenvalue of [ — T.

V.
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Convergence Results for General Iteration Methods

If the spectral radius satisfies p(T) < 1, then (/ — T)~" exists, and

(I-T) "' =1+T+T?+... =T

Proof (1/2)
@ Because Tx = \x is true precisely when (/ — T)x = (1 — A\)x, we
have \ as an eigenvalue of T precisely when 1 — X is an
eigenvalue of [ — T.

@ But |A\| < p(T) < 1,s0 X =1is not an eigenvalue of T, and 0
cannot be an eigenvalue of / — T.

V.
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Convergence Results

Convergence Results for General Iteration Methods

If the spectral radius satisfies p(T) < 1, then (/ — T)~" exists, and

(I-T) "' =1+T+T?+... =T

Proof (1/2)

@ Because Tx = \x is true precisely when (/ — T)x = (1 — A\)x, we
have \ as an eigenvalue of T precisely when 1 — X is an
eigenvalue of [ — T.

@ But |A\| < p(T) < 1,s0 X =1is not an eigenvalue of T, and 0
cannot be an eigenvalue of / — T.

@ Hence, (I — T)~' exists.

V.
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Convergence Results

Convergence Results for General Iteration Methods

Proof (2/2)

Let
Sm=I1+T+T?+...+ T
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Convergence Results

Convergence Results for General Iteration Methods

Proof (2/2)

Let
Sm=I1+T+T?+...+ T

Then
(I-T)Sm=(1+T+T2+ 4T —(T+ T2+ .+ T™") = |- T
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Convergence Results

Convergence Results for General Iteration Methods

Proof (2/2)
Let
Sm=I1+T+T24...4T"

Then
(I-T)Sm=(1+T+T2+ 4T —(T+ T2+ .+ T™") = |- T

and, since T is convergent, the on convergent matrices
implies that
lim (/- T)Sm = n;im (I—TMY =1

m—oo — 00
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Convergence Results

Convergence Results for General Iteration Methods

Proof (2/2)
Let
Sm=I1+T+T?+...+ T

Then
(I-T)Sm=(1+T+T2+ 4T —(T+ T2+ .+ T™") = |- T

and, since T is convergent, the on convergent matrices
implies that
lim (/- T)Sm = n;im (I—TMY =1

m—oo —0Q

Thus, (/= 7)™ = liMpooe Sp= 1+ T+ T2 4. = Y2 T
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Convergence Results

Convergence Results for General Iteration Methods

For any x(® € R”, the sequence {x(K)}%  defined by
x0) = Tx(k=1) 4 ¢, foreach k > 1
converges to the unigue solution of
Xx=Tx+c

if and only if p(T) < 1.
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Convergence Results

Convergence Results for General Iteration Methods

Proof (1/5)
First assume that p(T) < 1.

V.
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Convergence Results

Convergence Results for General Iteration Methods

Proof (1/5)
First assume that p(T) < 1. Then,

xB = x4 ¢

V.
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Convergence Results

Convergence Results for General Iteration Methods

Proof (1/5)
First assume that p(T) < 1. Then,

xB = x4 ¢
T(Tx*2® 1 ¢)+¢c

V.

Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods I R L Burden & J D Faires 22/38



Convergence Results

Convergence Results for General Iteration Methods

Proof (1/5)
First assume that p(T) < 1. Then,

xB = x4 ¢
= T(Tx*k2 te)+e
T2x*=2) L (T + e

V.
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Convergence Results

Convergence Results for General Iteration Methods

Proof (1/5)
First assume that p(T) < 1. Then,

xB = x4 ¢
= T(Tx*k2 te)+e
T2x*=2) L (T + e

T*xO) (T4 ...+ T+ e

V.
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Convergence Results

Convergence Results for General Iteration Methods

Proof (1/5)
First assume that p(T) < 1. Then,

xB = x4 ¢
= T(Tx*k2 te)+e
T2x*=2) L (T + e

T*xO) (T4 ...+ T+ e

Because p(T) < 1, the on convergent matrices implies that
is convergent, and
lim Thx©) =0

k—o00

T

V.
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Convergence Results

Convergence Results for General Iteration Methods

Proof (2/5)
The previous lemma implies that

i K — g K (0) il
lim x kILmOOTx —I—(ZT)C

k—
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Convergence Results

Convergence Results for General Iteration Methods

Proof (2/5)
The previous lemma implies that

i K — g K (0) il
lim x kILmOOTx —I—(ZT)C

k—

= 0+(/-T)"c
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Convergence Results

Convergence Results for General Iteration Methods

Proof (2/5)
The previous lemma implies that

i K — g K (0) il
lim x kILmOOTx —I—(ZT)C

k—

= 0+(/-T)"c

= (I-T)"¢c
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Convergence Results

Convergence Results for General Iteration Methods

Proof (2/5)
The previous lemma implies that

i K — g K (0) il
lim x kILmOOTx +(ZT)C

k—

= 0+(/-T)"c

= (I-T)"¢c

Hence, the sequence {x(%)} converges to the vector x = (/ — T)~'c
andx = Tx+c.
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Convergence Results

Convergence Results for General Iteration Methods

Proof (3/5)

@ To prove the converse, we will show that for any z € R”, we have
limg_ TFz = 0.
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@ Again, by the theorem on convergent matrices, this is equivalent
to p(T) < 1.

@ Let z be an arbitrary vector, and x be the unique solution to
Xx=Tx+c.

@ Define x(O) = x — z, and, for k > 1, x(H) = Tx(k=1) ¢,
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Convergence Results

Convergence Results for General Iteration Methods

Proof (3/5)

@ To prove the converse, we will show that for any z € R”, we have
limg_ TFz = 0.

@ Again, by the theorem on convergent matrices, this is equivalent
to p(T) < 1.

@ Let z be an arbitrary vector, and x be the unique solution to
Xx=Tx+c.

@ Define x(O) = x — z, and, for k > 1, x(H) = Tx(k=1) ¢,
@ Then {x(¥)} converges to x.
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Convergence Results

Convergence Results for General Iteration Methods

Proof (4/5)
Also,

x—x0) = (Tx+¢) - (Tx(k*” +c) = T(x—x(k*”)

V.
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Also,

x—x0) = (Tx+¢) - (Tx(k*” +c) = T(x—x(k*”)

S0
x—xH = T(x—x(k‘1)>

= T2 (x — x(k‘z))

= :Tk (x - x(o))
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Convergence Results

Convergence Results for General Iteration Methods

Proof (4/5)
Also,

x—x0) = (Tx+¢) - (Tx(k*” +c) = T(x—x(k*”)

S0
x—xH = T(x—x(k‘1)>

= T2 (x — x(k‘z))

= :Tk (x - x(o))

= Tz

V.
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Convergence Results

Convergence Results for General Iteration Methods

Proof (5/5)
@ Hence

lim T"z = Im TX (x_x(o>)

k—oo k—o0
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Convergence Results

Convergence Results for General Iteration Methods

Proof (5/5)
@ Hence
lim T"z = lim Tk (x—x<0>)
k—o0 k—oo
— i _ y(K)
- kll—>moo (x X )
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Convergence Results

Convergence Results for General Iteration Methods

Proof (5/5)
@ Hence
lim T"z = lim Tk (x—x<0>)
k—o0 k—oo
— i _ y(K)
- kll—>moo (x X )
=0

@ But z € IR" was arbitrary, so by the theorem on convergent
matrices, T is convergent and p(T) < 1.
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Convergence Results

Convergence Results for General Iteration Methods

Corollary

| T|| < 1 for any natural matrix norm and ¢ is a given vector, then the
sequence {x(K)}%  defined by

xF) = Txk=1) 4 ¢

converges, for any x(¥) ¢ IR”, to a vector x € R”, with x = Tx + ¢, and
the following error bounds hold:
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Corollary

| T|| < 1 for any natural matrix norm and ¢ is a given vector, then the
sequence {x(K)}%  defined by

xF) = Txk=1) 4 ¢
converges, for any x(9) € R”, to a vector x € R”, with x = Tx + ¢, and
the following error bounds hold:
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Convergence Results

Convergence Results for General Iteration Methods

Corollary

| T|| < 1 for any natural matrix norm and ¢ is a given vector, then the
sequence {x(K)}%  defined by

xF) = Txk=1) 4 ¢
converges, for any x(9) € R”, to a vector x € R”, with x = Tx + ¢, and
the following error bounds hold:
(i) fx —x® < || T*Ix© — x|

() x = x] < Ly XD - x©)

The proof of the following corollary is similar to that for the to
the Fixed-Point Theorem for a single nonlinear equation.

&
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Interpretation

Outline

e Application to the Jacobi & Gauss-Seidel Methods
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Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

Using the Matrix Formulations

We have seen that the Jacobi and Gauss-Seidel iterative techniques
can be written

x® = Tx*=" ¢ and
xK) = Toxk=D 1 ¢
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Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

Using the Matrix Formulations

We have seen that the Jacobi and Gauss-Seidel iterative techniques
can be written

x® = Tx*=" ¢ and
xK) = Toxk=D 1 ¢

using the matrices
T,=D"'(L+U) and Ty=(D-L)"'U

respectively. If p(T;) or p(Ty) is less than 1, then the corresponding
sequence {x(K)}%  will converge to the solution x of Ax = b.
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Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

For example, the Jacobi method has

x®) = p=(L+ U)x*=) Db,
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Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

For example, the Jacobi method has
x®) = p=(L+ U)x*=) Db,

and, if {x(X)}2 ’ converges to x,
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x®) = p=(L+ U)x*=) Db,
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Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods I R L Burden & J D Faires 30/38



Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

For example, the Jacobi method has
x®) = p=(L+ U)x*=) Db,
and, if {x(K)}2  converges to x, then
x=D"(L+Ux+D'b
This implies that
Dx=(L+U)x+b and (D-L-U)x=Db

Since D — L — U = A, the solution x satisfies Ax = b.
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Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

The following are easily verified sufficiency conditions for convergence
of the Jacobi and Gauss-Seidel methods. J
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Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

The following are easily verified sufficiency conditions for convergence
of the Jacobi and Gauss-Seidel methods. J

If Ais strictly diagonally dominant, then for any choice of x(9), both the
Jacobi and Gauss-Seidel methods give sequences {x(¥)}5°  that
converge to the unique solution of Ax = b.
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Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

Is Gauss-Seidel better than Jacobi?
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Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

Is Gauss-Seidel better than Jacobi?

@ No general results exist to tell which of the two techniques, Jacobi
or Gauss-Seidel, will be most successful for an arbitrary linear
system.
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Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

Is Gauss-Seidel better than Jacobi?

@ No general results exist to tell which of the two techniques, Jacobi
or Gauss-Seidel, will be most successful for an arbitrary linear
system.

@ In special cases, however, the answer is known, as is
demonstrated in the following theorem.
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Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

(Stein-Rosenberg) Theorem

If a; <0, foreach i # jand a; > 0, foreach i =1,2,...,n, then one
and only one of the following statements holds:

(i) 0<p(Tg) <p(T)j) <1
(i) 1< p(T)j) < p(Tg)

(i) p(T;) =p(Tg) =0
(iv) p(Tj) =p(Tg) =1

Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods I R L Burden & J D Faires 33/38



Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

(Stein-Rosenberg) Theorem

If a; <0, foreach i # jand a; > 0, foreach i =1,2,...,n, then one
and only one of the following statements holds:

(i) 0<p(Tg) <p(T)j) <1
(i) 1< p(T)j) < p(Tg)

(i) p(T;) =p(Tg) =0
(iv) p(Tj) =p(Tg) =1

For the proof of this result, see pp. 120-127. of

Young, D. M., lterative solution of large linear systems, Academic
Press, New York, 1971, 570 pp. J
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Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

Two Comments on the Thoerem

@ For the special case described in the theorem, we see from part
(i), namely
0 < p(Tqg) < p(Tj) <1
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Two Comments on the Thoerem

@ For the special case described in the theorem, we see from part
(i), namely
0 < p(Tg) < p(Tj) <1
that when one method gives convergence, then both give
convergence, and the Gauss-Seidel method converges faster than
the Jacobi method.

Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods I R L Burden & J D Faires 34/38



Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

Two Comments on the Thoerem

@ For the special case described in the theorem, we see from part

(i), namely
0 < p(Tg) < p(Tj) <1

that when one method gives convergence, then both give
convergence, and the Gauss-Seidel method converges faster than
the Jacobi method.

@ Part (ii), namely

1< p(T)) < p(Tyg)

indicates that when one method diverges then both diverge, and
the divergence is more pronounced for the Gauss-Seidel method.

v
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Questions?



Eigenvalues & Eigenvectors: Convergent Matrices

The following statements are equivalent.
(i) Ais a convergent matrix.

(i) limp— [|A"|| = O, for some natural norm.

(i) limp_oeo ||A"|| = 0, for all natural norms.

(iv) p(A) <
)

(v I|m,,_>C>O A"x = 0, for every x.

The proof of this theorem can be found on p. 14 of Issacson, E. and H.
B. Keller, Analysis of Numerical Methods, John Wiley & Sons, New
York, 1966, 541 pp.

<

< Return to General Iteration Methods — Introduction
< Return to General lteration Methods — Lemma
< Return to General lteration Methods — Theorem




Fixed-Point Theorem

Let g € CJa, b] be such that g(x) € [a, b], for all x in [a, b]. Suppose, in
addition, that g’ exists on (a, b) and that a constant 0 < k < 1 exists
with

Ig'(x)| < k, forall x € (a,b).

Then for any number pg in [a, b], the sequence defined by

Pn = 9(Pn—1), n>1

converges to the unique fixed point p in [a, b].




Functional (Fixed-Point) lteration

Corrollary to the Fixed-Point Convergence Result

If g satisfies the hypothesis of the Fixed-Point then
kn
1—-k

lpn — p| < lp1 — Pol




