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Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation

The Gauss-Seidel Method

Looking at the Jacobi Method
A possible improvement to the Jacobi Algorithm can be seen by
re-considering

x (k)
i =

1
aii

2

664
nX

j=1
j 6=i

⇣
�aijx

(k�1)
j

⌘
+ bi

3

775 , for i = 1, 2, . . . , n

The components of x(k�1) are used to compute all the
components x (k)

i of x(k).

But, for i > 1, the components x (k)
1 , . . . , x (k)

i�1 of x(k) have already
been computed and are expected to be better approximations to
the actual solutions x1, . . . , xi�1 than are x (k�1)

1 , . . . , x (k�1)
i�1 .
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The Gauss-Seidel Method
Instead of using

x (k)
i =

1
aii

2

664
nX

j=1
j 6=i

⇣
�aijx

(k�1)
j

⌘
+ bi

3

775 , for i = 1, 2, . . . , n

it seems reasonable, then, to compute x (k)
i using these most recently

calculated values.

The Gauss-Seidel Iterative Technique

x (k)
i =

1
aii

2

4�
i�1X
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(aijx
(k)
j )�

nX

j=i+1

(aijx
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j ) + bi
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for each i = 1, 2, . . . , n.
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The Gauss-Seidel Method
Example
Use the Gauss-Seidel iterative technique to find approximate solutions
to

10x1 � x2 + 2x3 = 6
�x1 + 11x2 � x3 + 3x4 = 25
2x1 � x2 + 10x3 � x4 = �11

3x2 � x3 + 8x4 = 15

,

starting with x = (0, 0, 0, 0)t and iterating until

kx(k) � x(k�1)k1
kx(k)k1

< 10�3

Note: The solution x = (1, 2, �1, 1)t was approximated by Jacobi’s
method in an earlier example.
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The Gauss-Seidel Method

Solution (1/3)
For the Gauss-Seidel method we write the system, for each
k = 1, 2, . . . as

x (k)
1 =

1
10

x (k�1)
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5
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3 +
3
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11
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x (k)
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5
x (k)
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1
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x (k)
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1
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x (k�1)
4 � 11
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x (k)
4 = � 3

8
x (k)
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x (k)
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The Gauss-Seidel Method

Solution (2/3)
When x(0) = (0, 0, 0, 0)t , we have
x(1) = (0.6000, 2.3272, �0.9873, 0.8789)t .

Subsequent iterations give
the values in the following table:

k 0 1 2 3 4 5

x (k)
1 0.0000 0.6000 1.030 1.0065 1.0009 1.0001

x (k)
2 0.0000 2.3272 2.037 2.0036 2.0003 2.0000

x (k)
3 0.0000 �0.9873 �1.014 �1.0025 �1.0003 �1.0000

x (k)
4 0.0000 0.8789 0.984 0.9983 0.9999 1.0000
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The Gauss-Seidel Method

Solution (3/3)
Because

kx(5) � x(4)k1
kx(5)k1

=
0.0008
2.000

= 4⇥ 10�4

x(5) is accepted as a reasonable approximation to the solution.

Note that, in an earlier example, Jacobi’s method required twice as
many iterations for the same accuracy.
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The Gauss-Seidel Method: Matrix Form

Re-Writing the Equations
To write the Gauss-Seidel method in matrix form,

multiply both sides of

x (k)
i =

1
aii

2

4�
i�1X

j=1

(aijx
(k)
j )�

nX

j=i+1

(aijx
(k�1)
j ) + bi

3

5

by aii and collect all k th iterate terms, to give

ai1x (k)
1 + ai2x (k)

2 + · · · + aiix
(k)
i = �ai,i+1x (k�1)

i+1 � · · ·� ainx (k�1)
n + bi

for each i = 1, 2, . . . , n.
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The Gauss-Seidel Method: Matrix Form

Re-Writing the Equations (Cont’d)
Writing all n equations gives

a11x
(k)
1 = �a12x

(k�1)
2 � a13x

(k�1)
3 � · · ·� a1nx(k�1)

n + b1

a21x
(k)
1 + a22x

(k)
2 = �a23x

(k�1)
3 � · · ·� a2nx(k�1)

n + b2

...

an1x
(k)
1 + an2x

(k)
2 + · · · + annx(k)

n = bn

With the definitions of D, L, and U given previously, we have the
Gauss-Seidel method represented by

(D � L)x(k) = Ux(k�1) + b

Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 11 / 38
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The Gauss-Seidel Method: Matrix Form

(D � L)x(k) = Ux(k�1) + b

Re-Writing the Equations (Cont’d)
Solving for x(k) finally gives

x(k) = (D � L)�1Ux(k�1) + (D � L)�1b, for each k = 1, 2, . . .

Letting Tg = (D � L)�1U and cg = (D � L)�1b, gives the Gauss-Seidel
technique the form

x(k) = Tgx(k�1) + cg

For the lower-triangular matrix D � L to be nonsingular, it is necessary
and sufficient that aii 6= 0, for each i = 1, 2, . . . , n.

Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 12 / 38
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Gauss-Seidel Iterative Algorithm (1/2)

To solve Ax = b given an initial approximation x(0):

INPUT the number of equations and unknowns n;
the entries aij , 1  i , j  n of the matrix A;
the entries bi , 1  i  n of b;
the entries XOi , 1  i  n of XO = x(0);
tolerance TOL;
maximum number of iterations N.

OUTPUT the approximate solution x1, . . . , xn or a message
that the number of iterations was exceeded.
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Gauss-Seidel Iterative Algorithm (2/2)

Step 1 Set k = 1
Step 2 While (k  N) do Steps 3–6:

Step 3 For i = 1, . . . , n

set xi =
1
aii

2

4�
i�1X

j=1

aijxj �
nX

j=i+1

aijXOj + bi

3

5

Step 4 If ||x� XO|| < TOL then OUTPUT (x1, . . . , xn)
(The procedure was successful)

STOP
Step 5 Set k = k + 1
Step 6 For i = 1, . . . , n set XOi = xi

Step 7 OUTPUT (‘Maximum number of iterations exceeded’)
STOP (The procedure was unsuccessful)
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Step 1 Set k = 1
Step 2 While (k  N) do Steps 3–6:

Step 3 For i = 1, . . . , n

set xi =
1
aii

2

4�
i�1X

j=1

aijxj �
nX

j=i+1

aijXOj + bi

3

5

Step 4 If ||x� XO|| < TOL then OUTPUT (x1, . . . , xn)
(The procedure was successful)

STOP
Step 5 Set k = k + 1
Step 6 For i = 1, . . . , n set XOi = xi

Step 7 OUTPUT (‘Maximum number of iterations exceeded’)
STOP (The procedure was unsuccessful)
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Gauss-Seidel Iterative Algorithm
Comments on the Algorithm

Step 3 of the algorithm requires that aii 6= 0, for each
i = 1, 2, . . . , n.

If one of the aii entries is 0 and the system is
nonsingular, a reordering of the equations can be performed so
that no aii = 0.
To speed convergence, the equations should be arranged so that
aii is as large as possible.
Another possible stopping criterion in Step 4 is to iterate until

kx(k) � x(k�1)k
kx(k)k

is smaller than some prescribed tolerance.
For this purpose, any convenient norm can be used, the usual
being the l1 norm.
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Outline

1 The Gauss-Seidel Method

2 The Gauss-Seidel Algorithm

3 Convergence Results for General Iteration Methods

4 Application to the Jacobi & Gauss-Seidel Methods
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Convergence Results for General Iteration Methods

Introduction
To study the convergence of general iteration techniques, we need
to analyze the formula

x(k) = T x(k�1) + c, for each k = 1, 2, . . .

where x(0) is arbitrary.
The following lemma and the earlier Theorem on convergent
matrices provide the key for this study.
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Convergence Results for General Iteration Methods

Lemma
If the spectral radius satisfies ⇢(T ) < 1, then (I � T )�1 exists, and

(I � T )�1 = I + T + T 2 + · · · =
1X

j=0

T j

Proof (1/2)
Because Tx = �x is true precisely when (I � T )x = (1� �)x, we
have � as an eigenvalue of T precisely when 1� � is an
eigenvalue of I � T .
But |�|  ⇢(T ) < 1, so � = 1 is not an eigenvalue of T , and 0
cannot be an eigenvalue of I � T .
Hence, (I � T )�1 exists.
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Convergence Results for General Iteration Methods

Proof (2/2)
Let

Sm = I + T + T 2 + · · · + T m

Then

(I�T )Sm = (1+T +T 2 + · · ·+T m)� (T +T 2 + · · ·+T m+1) = I�T m+1

and, since T is convergent, the Theorem on convergent matrices
implies that

lim
m!1

(I � T )Sm = lim
m!1

(I � T m+1) = I

Thus, (I � T )�1 = limm!1 Sm = I + T + T 2 + · · · =
P1

j=0 T j
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Convergence Results for General Iteration Methods

Theorem
For any x(0) 2 IRn, the sequence {x(k)}1k=0 defined by

x(k) = Tx(k�1) + c, for each k � 1

converges to the unique solution of

x = T x + c

if and only if ⇢(T ) < 1.
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Convergence Results for General Iteration Methods

Proof (1/5)
First assume that ⇢(T ) < 1.

Then,

x(k) = Tx(k�1) + c
= T (T x(k�2) + c) + c
= T 2x(k�2) + (T + I)c
...
= T kx(0) + (T k�1 + · · · + T + I)c

Because ⇢(T ) < 1, the Theorem on convergent matrices implies that T
is convergent, and

lim
k!1

T kx(0) = 0
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Convergence Results for General Iteration Methods

Proof (2/5)
The previous lemma implies that

lim
k!1

x(k) = lim
k!1

T kx(0) +

0

@
1X

j=0

T j

1

A c

= 0 + (I � T )�1c

= (I � T )�1c

Hence, the sequence {x(k)} converges to the vector x ⌘ (I � T )�1c
and x = Tx + c.
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Convergence Results for General Iteration Methods

Proof (3/5)
To prove the converse, we will show that for any z 2 IRn, we have
limk!1 T kz = 0.

Again, by the theorem on convergent matrices, this is equivalent
to ⇢(T ) < 1.
Let z be an arbitrary vector, and x be the unique solution to
x = T x + c.
Define x(0) = x� z, and, for k � 1, x(k) = Tx(k�1) + c.
Then {x(k)} converges to x.
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Convergence Results for General Iteration Methods

Proof (4/5)
Also,

x� x(k) = (Tx + c)�
⇣

T x(k�1) + c
⌘

= T
⇣

x� x(k�1)
⌘

so
x� x(k) = T

⇣
x� x(k�1)

⌘

= T 2
⇣

x� x(k�2)
⌘

=
...

= T k
⇣

x� x(0)
⌘

= T kz
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Convergence Results for General Iteration Methods

Proof (5/5)
Hence

lim
k!1

T kz = lim
k!1

T k
⇣

x� x(0)
⌘

= lim
k!1

⇣
x� x(k)

⌘

= 0

But z 2 IRn was arbitrary, so by the theorem on convergent
matrices, T is convergent and ⇢(T ) < 1.

Numerical Analysis (Chapter 7) Jacobi & Gauss-Seidel Methods II R L Burden & J D Faires 26 / 38



Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation

Convergence Results for General Iteration Methods

Proof (5/5)
Hence

lim
k!1

T kz = lim
k!1

T k
⇣

x� x(0)
⌘

= lim
k!1

⇣
x� x(k)

⌘

= 0

But z 2 IRn was arbitrary, so by the theorem on convergent
matrices, T is convergent and ⇢(T ) < 1.
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Convergence Results for General Iteration Methods

Corollary
kTk < 1 for any natural matrix norm and c is a given vector, then the
sequence {x(k)}1k=0 defined by

x(k) = T x(k�1) + c

converges, for any x(0) 2 IRn, to a vector x 2 IRn, with x = Tx + c, and
the following error bounds hold:

(i) kx� x(k)k  kTkkkx(0) � xk

(ii) kx� x(k)k  kTkk

1�kTkkx
(1) � x(0)k

The proof of the following corollary is similar to that for the Corollary to
the Fixed-Point Theorem for a single nonlinear equation.
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Outline

1 The Gauss-Seidel Method

2 The Gauss-Seidel Algorithm

3 Convergence Results for General Iteration Methods

4 Application to the Jacobi & Gauss-Seidel Methods
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Gauss-Seidel Method Gauss-Seidel Algorithm Convergence Results Interpretation

Convergence of the Jacobi & Gauss-Seidel Methods

Using the Matrix Formulations
We have seen that the Jacobi and Gauss-Seidel iterative techniques
can be written

x(k) = Tjx(k�1) + cj and

x(k) = Tgx(k�1) + cg

using the matrices

Tj = D�1(L + U) and Tg = (D � L)�1U

respectively. If ⇢(Tj) or ⇢(Tg) is less than 1, then the corresponding
sequence {x(k)}1k=0 will converge to the solution x of Ax = b.
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Convergence of the Jacobi & Gauss-Seidel Methods

Example
For example, the Jacobi method has

x(k) = D�1(L + U)x(k�1) + D�1b,

and, if {x(k)}1k=0 converges to x, then

x = D�1(L + U)x + D�1b

This implies that

Dx = (L + U)x + b and (D � L� U)x = b

Since D � L� U = A, the solution x satisfies Ax = b.
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Convergence of the Jacobi & Gauss-Seidel Methods

The following are easily verified sufficiency conditions for convergence
of the Jacobi and Gauss-Seidel methods.

Theorem
If A is strictly diagonally dominant, then for any choice of x(0), both the
Jacobi and Gauss-Seidel methods give sequences {x(k)}1k=0 that
converge to the unique solution of Ax = b.
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Convergence of the Jacobi & Gauss-Seidel Methods

Is Gauss-Seidel better than Jacobi?

No general results exist to tell which of the two techniques, Jacobi
or Gauss-Seidel, will be most successful for an arbitrary linear
system.
In special cases, however, the answer is known, as is
demonstrated in the following theorem.
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Convergence of the Jacobi & Gauss-Seidel Methods

(Stein-Rosenberg) Theorem
If aij  0, for each i 6= j and aii > 0, for each i = 1, 2, . . . , n, then one
and only one of the following statements holds:

(i) 0  ⇢(Tg) < ⇢(Tj) < 1
(ii) 1 < ⇢(Tj) < ⇢(Tg)

(iii) ⇢(Tj) = ⇢(Tg) = 0
(iv) ⇢(Tj) = ⇢(Tg) = 1

For the proof of this result, see pp. 120–127. of

Young, D. M., Iterative solution of large linear systems, Academic
Press, New York, 1971, 570 pp.
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Convergence of the Jacobi & Gauss-Seidel Methods

Two Comments on the Thoerem
For the special case described in the theorem, we see from part
(i), namely

0  ⇢(Tg) < ⇢(Tj) < 1

that when one method gives convergence, then both give
convergence, and the Gauss-Seidel method converges faster than
the Jacobi method.
Part (ii), namely

1 < ⇢(Tj) < ⇢(Tg)

indicates that when one method diverges then both diverge, and
the divergence is more pronounced for the Gauss-Seidel method.
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Questions?



Eigenvalues & Eigenvectors: Convergent Matrices

Theorem
The following statements are equivalent.

(i) A is a convergent matrix.
(ii) limn!1 kAnk = 0, for some natural norm.
(iii) limn!1 kAnk = 0, for all natural norms.
(iv) ⇢(A) < 1.
(v) limn!1 Anx = 0, for every x.

The proof of this theorem can be found on p. 14 of Issacson, E. and H.
B. Keller, Analysis of Numerical Methods, John Wiley & Sons, New
York, 1966, 541 pp.

Return to General Iteration Methods — Introduction

Return to General Iteration Methods — Lemma

Return to General Iteration Methods — Theorem



Fixed-Point Theorem
Let g 2 C[a, b] be such that g(x) 2 [a, b], for all x in [a, b]. Suppose, in
addition, that g0 exists on (a, b) and that a constant 0 < k < 1 exists
with

|g0(x)|  k , for all x 2 (a, b).

Then for any number p0 in [a, b], the sequence defined by

pn = g(pn�1), n � 1

converges to the unique fixed point p in [a, b].

Return to the Corrollary to the Fixed-Point Theorem



Functional (Fixed-Point) Iteration

Corrollary to the Fixed-Point Convergence Result
If g satisfies the hypothesis of the Fixed-Point Theorem then

|pn � p|  kn

1� k
|p1 � p0|

Return to the Corollary to the Convergence Theorem for General Iterative Methods


