Markov Chains: introduction
Discrete Markov Chains (DTMC). (Syllabus does not include CTMC).
Markov Chain is a stochastic process Where events happen in a sequence $s \cdot t$. the probability of an event at any -given time deperios solely- on the previous state.
eg. Badminton game.
Mathematically
$\left\{X_{n}\right\}_{n \in I,}$ describes a sequence of events

$$
\begin{gathered}
\substack{n \in I, n \geqslant 0} \\
P\left(X_{n}=x_{n} \mid X_{n-1}=x_{n-1}, X_{n-2}=x_{n-2}, \ldots ., X_{0}=x_{0}\right) \\
=P\left(X_{n}=x_{n} \mid X_{n-1}=x_{n-1}\right) \Rightarrow \begin{array}{c}
\text { Memoryless } \\
\text { property }
\end{array}
\end{gathered}
$$

eg (1) Gambler's ruin
Consider a gambling game in which on any turn you win $R_{s} \mathcal{S}_{1} \omega /$ probability $p=0.4$ or lose Re $1 \omega / p^{\prime}=(1-0.4)=0.6$. Suppose you adopt a strategy that you quit playing if your fortune reaches $R$ R 100 . Of course if your fortune becomes Rs 0 , the casino kicks you out. Design a Suitable Markov Model.
Soln:- Let $X_{n}=$ ant. of money you have after ' $n$ ' plays
of $x_{n} \neq 0$; then $p\left(x_{n+1}=i+1 \mid x_{n}=i, x_{n-1}=i_{n-1}, \cdots, x_{0}=i_{0}\right)$

$$
\begin{aligned}
& \text { sur } p_{i, i+1}=0.4 \\
& p_{i, i-1}=0.6 \\
& 0 * 100 \rightarrow p_{0,0}=1 \text { (Casino wis kick } \\
& \text { absorvinstates } \rightarrow P_{100,100}=1 \text { (you out win!) }
\end{aligned}
$$

* $p_{i, j} \equiv \mathbb{P} \quad$ in the previous $p g$. is Known as the Probability Transition Matrix. It is sometimes abs Known as the Stochastic matrix.
* DTMC have many applications.

We are working on a Pandemic Mgmt. technology (Epidemiological model) funded by DBT, Gout. of India which is a DTMC model.

Multi-step Transition probabilities.
The proleasility transition matrix $p_{i, j}$ gives information about going from state $i$ to state $\delta$ in ONE Step.

But we may be interested in knowing about transitions between states in more than one step.

$$
\begin{aligned}
& \text { between states in more than } p_{i, j}^{m} \equiv p^{m}(i, j)=P\left(x_{n+m}=j \mid X_{n}=i\right) ; m>1 \\
& i . e \text {, going from state } i \text {. }
\end{aligned}
$$

$i \cdot e$ probability of going from state $i$ to
state $j$ iv $m$ steps. state $j$ in $m>1$ steps.
eg. Social motility problem: $x_{n}=$ family's social class in

$$
\left.p_{i, j}=\begin{array}{l}
1 \\
2 \\
20.7 \\
0.3 \\
0.3 \\
0.2 \\
0.3 \\
0.3 \\
0.2
\end{array}\right)
$$

Qi) $\quad n^{\text {th }}$ generation $=\left\{\begin{array}{lll}1 & 2 & 3 \\ \uparrow & 1 & 1\end{array}\right\}$
Your parents were Low maple middle class. What is the probability that you are lower class?

Som:-
We need to find

$$
P\left(X_{2}=1, X_{1}=3 \mid X_{0}=2\right) ? ?
$$

$X_{0} \rightarrow$ parenents
$x_{1} \rightarrow y_{0 u}$ $x_{2} \rightarrow$ children
$\underset{\text { probability }}{\text { Conditional }} \frac{P\left(x_{2}=1, x_{1}=3, x_{0}=2\right)}{P\left(x_{0}=2\right)}$

$$
=\frac{P\left(x_{2}=1, x_{1}=3, x_{0}=2\right)}{P\left(x_{1}=3, x_{0}=2\right)} \frac{P\left(x_{1}=3, x_{0}=2\right)}{P\left(x_{0}=2\right)}
$$

Again
conditional $P\left(X_{2}=1 \mid X_{1}=3, x_{0}=2\right) \quad P\left(X_{1}=3 \mid X_{0}=2\right)$
$\begin{aligned} \text { Markov } P\left(x_{2}=1 \mid x_{1}=3\right) P\left(x_{1}=3 \mid x_{0}=2\right) & =p(3,1) p(2,3) \\ & =0.2 \times 0.2\end{aligned}$
property

$$
\begin{aligned}
& =0.2 \times 0.2 \\
& =0.04 .
\end{aligned}
$$

Q2) Given you are lower class, what is the probability that your granichil Wren are upper class.
Sols:- $p^{2}(1,3)$ i.e. $(1,3)$ entry in $\mathbb{P}^{2}$ matrix :

$$
\left.\begin{array}{l}
(1,3) \quad \text { i.e. }(1,3) \text { entry in } P \text { mann } x
\end{array} \quad \begin{array}{llll}
0.7 & 2.2 & 0.1 \\
P^{2} & =\left(\begin{array}{ccc}
3 \\
0.3 & 0.5 & 0.2 \\
0.2 & 0.4 & 0.4
\end{array}\right)\left(\begin{array}{ccc}
0.7 & 0.2 & 0.1 \\
0.3 & 0.5 & 0.2 \\
0.2 & 0.4 & 0.4
\end{array}\right)=2\left(\begin{array} { c } 
{ x } \\
{ x }
\end{array} \left(\begin{array}{c}
x \\
x
\end{array} x\right.\right. & x \\
x & x & x
\end{array}\right) .
$$

$\frac{\text { Chapman Kolmogorov } E q^{n} \text {. }}{m+n}$

$$
p^{m+n}(i, j)=\sum_{k \in S} p^{m}(i, k) p^{n}(k, j)
$$

Why is the above true??

$$
\begin{aligned}
& P^{m+n}(i, j)=P\left(X_{n+m}=j \mid X_{0}=i\right) \\
& =\sum_{k=0}^{6} P\left(X_{m+n}=j, X_{m}=k \mid x_{0}=i\right) \\
& \left.\begin{array}{l}
\text { Low o of } \\
\text { total } \\
\text { proalulity } \\
\omega \mid x_{m}=k
\end{array}\right\}=\sum_{k=0}^{\infty=0} P\left(x_{m+n}=j^{\prime} x_{m}=k, x_{0}=i\right) P\left(x_{m}=k \mid x_{0}=i\right) \\
& \text { serving as } \\
& \text { partitioning (Markov, } \\
& \underset{\text { property }}{ } \sum_{k=0} p^{n}(k, j) p^{m}(i, k) \\
& \int_{0}^{\text {partitioning events }} 7 \text { time } \quad . \quad m+n
\end{aligned}
$$

* $n^{\text {th }}$ time probability $D^{n}$ of states * Long time probability $D^{n}$ of stater

We will need:- 1) Initial probability $D^{n}$ of $s$ states
iI) probability-transition matrix.

Initial $D^{n}$ for $k$-states

$$
\begin{aligned}
& \frac{\text { Initial } D^{n} \text { for } k \text {-states }}{\vec{\mu}^{(0)}=\left(\mu_{1}^{(0)}, \mu_{r}^{(0)}, \ldots, \mu_{3}^{(0)}\right)=\left(P\left(x_{0}=s_{1}\right), P\left(x_{0}=s_{2}\right), \ldots, P\left(x_{0}=s_{k}\right)\right)} \\
&
\end{aligned}
$$

Where $\sum_{i=1}^{k} \mu_{i}^{(0)}=1 \quad(b / c \underset{\text { probability }}{\operatorname{axiom}})$ probability)

So $n^{\text {th }}$ step $D^{n}$ of states:- $\vec{u}^{(n)}=\vec{\mu}^{(0)} \mathbb{P}^{n}$
$\lg$ (A simple weather model).
Consider a simple model that- predicts weather On a given day as follows
$\rightarrow$ the weather stays the same on any given day as the previous day $75 \%$ of the time $\rightarrow 25 \%$ of the time it changes
for simplicity, let us consider that there are only 2 states of the weather $\dot{v} z$. $s_{1}=$ rainy, $s_{2}=\operatorname{sunny}$ Q) What is the long time behavior of the weather distribution given that $\vec{\mu}_{s_{2}}^{(0)}=(1,0)=\left(s_{1}, s_{2}\right)$

$$
P=\begin{array}{lcc}
s_{1} & s_{1} & s_{2} \\
s_{2} & \left(\begin{array}{ll}
75 & 0.25 \\
0.25 & 0.75
\end{array}\right)
\end{array}
$$

$$
\begin{aligned}
& \vec{\mu}(1)=\vec{\mu}(0) \mathbb{F}=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0.75 & 0.25 \\
0.25 & 0.75
\end{array}\right)=\left(\begin{array}{ll}
0.75 & 0.25
\end{array}\right) \\
& \vec{\mu}^{(2)}=\vec{\mu}(0) \mathbb{P}^{2}(\underline{R} \vec{\mu}(1) \mathbb{P})=\left(\begin{array}{ll}
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0.75 & 0.25 \\
0.25 & 0.75
\end{array}\right)^{2}=\left(\begin{array}{ll}
0.625 & 0.375
\end{array}\right)
\end{aligned}
$$

$$
\dot{\mu}^{(\infty)}=\mu^{(0)} \mathbb{P}^{\infty}=\left(\begin{array}{ll}
0.5 & 0.5
\end{array}\right) \quad \text { What is } \vec{\mu}^{(\infty)} \mathbb{P}=\text { ? }
$$

Q) Consider a Markov model of a game of Baiminton. For simplicity, let us consider there are only 3 types Of shots played by the players $v i z$. $\left\{\begin{array}{l}\text { drop, lift, smash } \\ =\{D, L, S\}\end{array}\right.$

$$
\{=\{D, L, S\}
$$

We are interested in formulating/analyzing a winning Strategy:-

| $\operatorname{shot}$ | Return shot | $\frac{w / \text { probability }}{\text { Drop }(D)}$ |
| :---: | :---: | :---: |
| $\operatorname{Drap}(D)$ | Lift | $1 / 2$ |
| $D$ | $S$ | $1 / 3$ |
| $L$ | $D$ | 0 |
| $L$ | $L$ | $1 / 5$ |
| $L$ | $S$ | $1 / 5$ |
| $D$ |  | $2 / 5$ |


| Shot | $\frac{\text { return shot }}{\text { S }}$ | $\frac{w / \text { probability }}{2 / 5}$ |
| :---: | :---: | :---: |
| $S$ | $L$ | $1 / 5$ |
| $S$ | $D$ | 0 |

Q1) Identify an appropriate state space.
Q2) Construct a probability transition probability.
Q3) What is the probability of a winning shot given that the final 3 shots in the rally were respectively $x_{n-1} \quad x_{n-2} \quad x_{n-3}$
(a) smash, lift, lift
(b) smash, lop, lift
(c) drop, lift, smash

Q4) Given a "lifted" serve, what is the probalenlity thatthere is a "winner" in 3 shots?

