Tutorial 4: Series and Sequences of Complex Functions, Singularities and Analytic Continuation

Due:
April 15 (Monday) in class

1. Determine if the following sequences converge. Do they converge uniformly in the region $0<$ $\alpha \leq|z| \leq \beta<\infty$?
(i) $\left\{\frac{1}{n z^{2}}\right\}_{n=1}^{\infty}$
(ii) $\{\sin (z / n)\}_{n=1}^{\infty}$
2. Compute the integrals: $\lim _{n \rightarrow \infty} \int_{0}^{1} n z^{n-1} d z$ and $\int_{0}^{1} \lim _{n \rightarrow \infty} n z^{n-1} d z$. Explain your observation.
3. Find the first two non-zero terms of the Laurent expansion of $f(z)=\tan z$ about $z=\pi / 2$. What is the radius of convergence of this series.
4. Discuss the analytic continuation of $\log z$ on the complex plane. Is the continuation unique?
5. Discuss the singularity of the function $f(z)$ which is expanded as the following series

$$
f(z)=\sum_{n=0}^{\infty} z^{2^{n}} .
$$

6. Expand $f(z)=\frac{z}{(z-2)(z+i)}$ as a Laurent series about $z=0$ in the following regions:
(i) $|z|<1$, (ii) $1<|z|<2$, and (iii) $|z|>2$.
7. Consider the function $F(z)=\int_{0}^{\infty} e^{3 t} e^{-z t} d t$. What is the region of analyticity, A of $F(z)$? Can we extend the region of analyticity of $F(z)$ from A to a bigger region? That is, can we find a region B and a function $\tilde{F}(z)$ such that
(a) B contains A,
(b) $\tilde{F}(z)$ is analytic on B, and
(c) $\tilde{F}(z)=F(z), \forall z \in A$.
