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Module 2

Probability Distributions
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Mini-Project of Module 2

Predicting Insurance Claim Aggregates 
during a 

Policy Period
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Geometrical Interpretation of Integration with respect to a Distribution Function

𝑢 𝑥 𝑑𝑥
𝔇

≅ 𝑢 𝑥∗ ∆𝑥

∈𝔇

𝑢 𝑥 𝑓(𝑥)𝑑𝑥
𝔇

≅ 𝑢 𝑥∗ 𝑓 𝑥∗ ∆𝑥

∈𝔇

𝑢 𝑥 𝑑𝐹(𝑥)
𝔇

where

𝑓 𝑥 =
𝑑𝐹(𝑥)

𝑑𝑥
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Figure 3.7: Distribution profile of 
the observables 𝑥 is prescribed 
by some function 𝐹(𝑥)

𝐹(𝑥): Cumulative Distribution Function        

with            

𝑓(𝑥): Probability Density Function

𝑢 𝑥 𝑓 𝑥 𝑑𝑥 = 𝑢 𝑥 𝑑𝐹(𝑥)
𝔇𝔇

Over the range of 𝑥 between (-∞, ∞), 𝐹(𝑥)
varies between 0 and 1. 

Discontinuities (positive jumps in 𝐹(𝑥)) will 
show up as delta functions in 𝑓(𝑥), e.g., of 
the type 𝑎𝛿(𝑥 − 𝑥 ) for a jump of 𝑎 in 𝐹(𝑥)
at 𝑥 = 𝑥
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Discrete vs Continuous Probability Distributions

Random Variable

Discrete Random 
Variable

Continuous 
Random Variable

Random variable which takes on distinct values, e.g., 
tossing a coin (H or T), throwing a dice (1, 2, 3, 4, 5, 6)

Random variables may take on a continuum of values 
over some specified range (e.g., in a sample space Ω), 
e.g., Temperature at a particular day, time and place

Example of a Communication System

Binary Source
1/0

Transmitter
+A volts for 1
-A volts for 0

Channel
Receiver

decides 1/0
+

Noise
𝒟 Discrete RV
𝒞 Continuous RV

𝒟 𝒟 𝒟

𝒞

𝒞 Note that the signal here is 
the sum of a continuous r.v.
and a discrete r.v.
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Probability Distribution Profile

Probability Mass Function Probability Density Function
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Probability Mass Function

For a Discrete Random Variable, each possible observable 𝑥 ∈ Ω has a 
certain probability of occurrence 𝑝 ≔ 𝑃 𝑋 = 𝑥 which we can think of 
as its probability mass

Axiom of Unitarity   ⇒   ∑ 𝑃 𝑋 = 𝑥 = 1∈

Convenient Notation:   𝑃 𝑥 ≡ 𝑝

This is to be read as the “probability mass function of the 
random variable 𝑋 for the value 𝑥 ”

7
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Probability Density Function (PDF)

In the case of a continuous random variable 𝑋, the probability mass is 
spread continuously over the range of the observables. 

Therefore, it is appropriate to use the notion of a density function
𝑓 (𝑥), instead of a probability mass.
This is interpreted as “𝑓 𝑥 𝑑𝑥 is the probability of the random variable
𝑋 lying between 𝑥 and 𝑥 + 𝑑𝑥”.

The unitarity axiom of probability then enforces the normalization of the 
probability density function (pdf) as –

𝑓 𝑥 𝑑𝑥
∈

= 1

It also follows that      𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = ∫ 𝑓 𝑥 𝑑𝑥

Area under the curve 𝑓 between 𝑎 and 𝑏 as in Fig. 3.10

𝑓 𝑥 𝑑𝑥 is a probability, but 𝑓 𝑥 is not!      𝑓 𝑥  is the probability density
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Cumulative Distribution Function (CDF)

The cumulative distribution function (cdf) 𝐹 : ℝ → [0, 1] is defined as

𝐹 𝑥 ≡ 𝐹 𝑥 ≔ 𝑃 𝑋 ≤ 𝑥 , 𝑥 ∈ ℝ

It follows that          𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = ∫ 𝑓 𝑥 𝑑𝑥 = 𝐹 𝑏 − 𝐹(𝑎)

The cdf 𝐹 must also satisfy the following properties –

(i) 𝑙𝑖𝑚 ↓ 𝐹 𝑦 = 0 𝑦 tends to -∞ from the right
(ii) 𝑙𝑖𝑚 ↑ 𝐹 𝑦  = 1 𝑦 tends to +∞ from the left
(iii) 𝑙𝑖𝑚 ↓ 𝐹 𝑦 = 𝐹 𝑥 , ∀𝑥 ∈ 𝑅 (𝑖. 𝑒. 𝐹 is right continuous)

𝑦 tends to 𝑥 from the right

The properties (i) and (ii) imply that 𝐹 is a non-decreasing function going 
from 0 to 1.

For a Continuous Random Variable,   𝐹 𝑥 = ∫ 𝑓 𝛼 𝑑𝛼

and    ( )
= 𝑓 𝑥  ⇒ 𝑑𝐹 𝑥 = 𝑓 𝑥 𝑑𝑥

9
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Cumulative Distribution Function (CDF) …… continued……

There are two main interpretation of the distribution function 𝐹𝑋(𝑥) that is noteworthy 
to mention here.

(I) 𝐹𝑋(𝑥) is the distribution of unit mass on the real line. Therefor, 𝐹(𝑏)  −  𝐹(𝑎) is the
mass concentrated in the interval (𝑏 − 𝑎). 

For the discrete case, locations of concentrated point mass on the real line (𝑥 ) are 
points of discontinuity of 𝐹𝑋 

with jumps proportional to 𝑝 ≡ 𝐹 𝑥 + 0 − 𝐹 𝑥 − 0 . 
There are a finite of countable number of such jumps and 𝐹 is continuous everywhere 
else. The corresponding PDF has delta functions 𝛿(𝑥 − 𝑥 ) with weight 𝑝  at each such 
𝑥 , i.e., 𝑥 𝛿 𝑥 − 𝑥 .

(ii) 𝐹𝑋(𝑥) encompasses the accumulation of probability masses (or density) up to 𝑥. 
Therefore, it is additive, non-negative, and has a unit maximum value. 
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Statistical Moments and their Significance

𝑿: Random Variable (Discrete or Continuous) and the observables 𝑥 ∈ Ω

 ( )

( ) ( ) ( )

x

x x

E X xP X x DiscreteCase

E X xf x dx x dF x dx ContinuousCase



 

 

 



 

Mean ( 𝜇, 𝜇 , 𝐸 𝑋 , 𝑋 ) First Moment of the random variable 𝑿

𝑃(𝑋):  0 𝑋=1, 0.5 𝑋=2, 0.25 𝑋=3, 0.25 𝑋=4

𝜇 = 0 + 1 + 0.75 + 1 = 2.75

𝑓 𝑥 = 𝜆𝑒          𝑥 ≥ 0

𝜇 = 𝑥 𝜆𝑒 𝑑𝑥 =
1

𝜆

Poisson Distribution
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Statistical Moments and their Significance

𝑿: Random Variable (Discrete or Continuous) and the observables 𝑥 ∈ Ω

      

   

2 2

2 2

( )

( ) ( ) ( )

x

x x

Var X E X x P X x DiscreteCase

Var X x f x dx x dF x dx ContinuousCase

 

 


 

    

   



 

Variance: (𝜎 , 𝜎 , 𝑉𝑎𝑟(𝑋))  Second Statistical Moment of the random variable 𝑿

𝑃(𝑋):  0 𝑋=1, 0.5 𝑋=2, 0.25 𝑋=3, 0.25 𝑋=4
𝑋 = 0 + 2 + 2.25 + 4 = 8.25
𝜎 = 8.25 − 2.75 = 0.6875

𝑓 𝑥 = 𝜆𝑒          𝑥 ≥ 0

𝜎 = 𝑥 −
1

𝜆
𝜆𝑒 𝑑𝑥 =

1

𝜆

Note that –
𝜎 = 𝑋 − 𝑋
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Statistical Moments and their Significance    ……. ……

𝑿: Random Variable (Discrete or Continuous) and the observables 𝑥 ∈ Ω

  
 

3
3

3 3

2( )

E XX
E

Var X




        

Skewness: (𝜇 )  Third Standardized Moment of the random variable 𝑿

𝜇 measures the Degree of Asymmetry of the pdf.

For example, a pdf that is symmetric about the mean has zero
skewness and all its higher order moments about the mean will also
be obviously zero.

Data with positive skewness has a pdf with a longer tail for 𝑋 − 𝜇 >
0 than for 𝑋 − 𝜇 < 0
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Statistical Moments and their Significance    ……. ……

𝑿: Random Variable (Discrete or Continuous) and the observables 𝑥 ∈ Ω

  
 

3
3

3 3

2( )

E XX
E

Var X




        

Skewness: (𝜇 )  Third Standardized Moment of the random variable 𝑿

𝜇 measures the Degree of Asymmetry of the pdf.

For example, a pdf that is symmetric about the mean has zero
skewness and all its higher order moments about the mean will also
be obviously zero.

Data with positive skewness has a pdf with a longer tail for 𝑋 − 𝜇 >
0 than for 𝑋 − 𝜇 < 0
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Example 1 Consider a random variable 𝑋 with the cdf as shown

( ) 0 0

0 2
3
1 2

XF x x

x
x

x

 

  

 
1

3

𝛿(x-2)

PDF

CDF

x

 

2

0

2
2 2

0

22 2 2

1 1 4
Mean:                      (2)

3 3 3

1 1 20
Second Moment:   (4)

3 3 9

4
Variance:               ( )

9

X xdx

X x dx

E X X X X

    
 

    
 

      





2

1
(2) ( 2)

3
x dx
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An insurance policy reimburses a loss up to a benefit limit of 𝐶 but has a deductible of 𝑑. 

Suppose that the policyholder’s loss, 𝑋 has the pdf 𝑓 𝑥 = 𝑒 , 𝑥 ≥ 0. 

Let 𝑌 denote the benefit paid under the insurance policy. 

Find the distribution of 𝒀.

Example 2 Operation of an Insurance Policy (insuring against a business loss)

For 0 ≤ 𝑋 ≤ 𝑑, no benefit will be paid, i.e., 

𝑌 = 0 with probability      ∫ 𝑓 𝑥 𝑑𝑥 = 1 − 𝑒

For 𝑋 ≥ 𝐶 + 𝑑, the benefit is fixed at           

𝑌 = 𝐶 with probability     ∫ 𝑓 𝑥 𝑑𝑥 = 𝑒

For 𝑑 ≤ 𝑋 < 𝐶 + 𝑑, the benefit varies as    

𝑌 = 𝑋 − 𝑑 with probability 𝑓 𝑦 = 𝑒   0 < 𝑦 < 𝐶

and cdf    𝐹 𝑦 = 1 − 𝑒 + ∫ 𝑒 𝑑𝑦 = 1 − 𝑒 0 < 𝑦 < 𝐶

1

𝐹 (𝑦)

𝑦𝐶

1 − 𝑒

1 − 𝑒

1 − 𝑒

See Next Slide for a more graphical interpretation
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0

0

𝑑

𝐶

𝐶 + 𝑑𝑑𝑥

Policyholder’s Loss 𝑋

Benefit Paid 𝑌

𝑑𝑦

∥ ∞
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5

5

5

( ) 1 ( ) 0

1
0

5

( )

d

Y

y d

C d

f y e y y

e y C

e y C y C










  
 

 
   
 

  

  

𝑒

1

𝐹 (𝑦)

𝑦𝐶

1 − 𝑒

1 − 𝑒

1 − 𝑒

𝑓 (𝑦)

1 − 𝑒

𝑒

𝑦𝐶
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Paradox of Residual Life

Your experiences with a cheap mobile phone and a super efficient repair person!

The phone has a lifetime given by the random variable 𝑋 with pdf 𝑓 𝑥 , 0 ≤ 𝑥 < ∞ and mean 𝑋. Your repair 
person is super-good and can immediately fix the phone and put it back in service once again!

Your father/mother wants to decide whether you have wasted your money or not and wants to check (at a 
random time instant) to see what is the time from that instant to when the phone fails next (Residual Life) 

Time instant when 
phone is examined

(randomly, in a 
random interval)

Time Line of Your Phone

1X 2X 3X 4X *X

Residual
Lifetime

19
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1X 2X 3X 4X
*X

0

( ) ( )XX E X xf x dx


  Mean Life Time

What is the Mean Residual Life Time, i.e. Mean Time to Next Breakdown ?

“Paradox of Residual Life” – The Mean 
Residual Time 𝑅 you would see is not 𝟏

𝟐
𝑿!

Actually, 𝑅 ≥ 𝑋

We can see that 𝑅 = 𝐸(𝑋∗) but to find that we need to find 𝑓 ∗(𝑥), the pdf of the selected lifetime

We can argue from simple logic that 𝑓 ∗(𝑥) = 𝐾𝑥𝑓 (𝑥)
and the normalization condition requires 

R

* *

0

( )
1

( ) 1 ), (
XX Xf x dx K

X

x
f x f x

X



   

Therefore, 
2

0

21
( )

2

1

2 2 2

1

2
X

X X
x X

x f x dx
X X

R X
X

       
 

 


 
This should make your parents very happy as 
they will see that you are doing better than 
the average lifetime written on the phone!
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Bernoulli Distribution     𝑋~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝)

The Bernoulli distribution is a discrete probability distribution for a Bernoulli trial — a random 
experiment that has only two outcomes (usually called a “Success” or a “Failure”)

If we associate the random variable 𝑋 with it as 𝑋 = 1 for, say, Success or Heads and 𝑋 = 0 for 
Failure or Tails, then the corresponding Probability Mass Function will be given as –

𝑃 𝑋 = 1 = 𝑝 Probability of Success   
and 𝑃 𝑋 = 0 = 1 − 𝑝 Probability of Failure

For multiple independent Bernoulli trials (say 𝑛 trials), the probability mass function will be 
given by the Binomial Distribution in the next slide 

2

(0,1)

( )

( ) ( ( )) ( ) (1 )X
x

X E X p

Var X x E X P x p p
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Binomial Distribution     𝑋~𝐵𝑖𝑛(𝑛, 𝑝)

The Binomial Distribution with parameters 
𝑛 and 𝑝 is the discrete probability distribution of 
the number of successes in a sequence of 𝑛
independent experiments, each with its own 
Boolean-valued outcome: success (with 
probability 𝑝) or failure (with probability 𝑞=1- 𝑝).

P(𝑖 successes in 𝑛 trials) =

P(𝑋 = 𝑖)=
𝑛
𝑖

𝑝 (1 − 𝑝) ,  𝑖=0, 1,….,𝑛

and 
𝑛
𝑖

=
!

! !

Equivalently, we can see that 𝑋 = ∑ 𝑋

where 𝑋 =
1   𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦  𝑝

0 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (1 − 𝑝)

𝑖

𝑃
(𝑋

=
𝑖)

𝑛=10, 𝑝 = 0.6

𝐸 𝑋 = 𝑝,   𝑉𝑎𝑟 𝑋 = 𝐸 𝑋 − 𝑝 = 𝑝(1 − 𝑝)

𝐸 𝑋      = ∑ 𝐸 𝑋 =  𝑛𝑝

𝑉𝑎𝑟 𝑋 = ∑ 𝑉𝑎𝑟(𝑋 ) since the 𝑋 are independent
= 𝑛𝑝(1 − 𝑝)

22
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Geometric Distribution of Type-0       𝑋~𝑔𝑒𝑜𝑚 (𝑝)

The Geometric Distribution of Type 0 is a type of discrete probability distribution that represents 
the probability of the number of successive failures before a success is obtained in a Bernoulli 
trial.     Note that the probability of failure in a given trial is (1 − 𝑝).

𝑃 𝑋 = 𝑥 =
1 − 𝑝 𝑥𝑝       𝑥 = 0,1, … . .

0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2

1 1
( ) ( )

p p
E X Var X

p p

 
 

(𝑥 +1)trials overall with 𝑥 failures 
and one success at the end

23
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Geometric Distribution of Type-1       𝑌~𝑔𝑒𝑜𝑚 (𝑝)

The Geometric Distribution of Type-1 is a type of discrete probability distribution that represents 
the probability of the number of Bernoulli trials until first success

Therefore, in a geometric distribution, a Bernoulli trial is repeated until a success (with probability 
𝑝) is obtained and then stopped.  (Note that the probability of failure in a given trial is (1 − 𝑝).

𝑃 𝑋 = 𝑥 =
(1 − 𝑝) 𝑝       𝑥 = 1,2 … . .
0                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2

1 1
( ) ( )

p
E X Var X

p p


 

𝑃 𝑋 > 𝑘 = 𝑃 𝑋 = 𝑘 + 1 + 𝑃 𝑋 = 𝑘 + 2 + ⋯

= (1 − 𝑝) 𝑝 + (1 − 𝑝) 𝑝 +  … .
                    = (1 − 𝑝)

𝐹 𝑘 = 𝑃 𝑋 ≤ 𝑘 = 1 − 𝑃(𝑋 > 𝑘)
= 1 − (1 − 𝑝)Revise your High School “tricks” 

on how to sum expressions like ∑ 𝑛𝑝
(There are two simple ways of doing this)

𝑥 trials overall with 𝑥 − 1 failures 
and one success at the end
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Memoryless Property of a Random Variable

A random variable 𝑋 is said to be Memoryless if    𝑃 𝑋 > 𝑛 + 𝑚 𝑋 > 𝑚 = 𝑃(𝑋 > 𝑛)

i.e. “The conditional probability of 𝑋 being greater than (𝑛 + 𝑚), given that it is greater than 𝑚
is the same as the probability of 𝑋 being greater than 𝑛”

Note that, 𝑃 𝑋 > 𝑛 + 𝑚 𝑋 > 𝑚 =
({ }∩{ })

=
( )

( )

For the geometric random variable 𝑋~𝑔𝑒𝑜𝑚 (𝑝) , this implies that -

𝑃 𝑋 > 𝑛 + 𝑚 𝑋 > 𝑚 =
(1 − 𝑝)

(1 − 𝑝)
= (1 − 𝑝) = 𝑃(𝑋 > 𝑛)

If a random variable of this type has crossed 𝑚 levels, then the probability of it crossing an 
additional 𝑛 levels is the same as its probability of crossing 𝑛 levels starting from the initial 
state. 𝑋~𝑔𝑒𝑜𝑚 (𝑝) is the only example of a Discrete Memoryless Distribution

Show that 𝑋~𝑔𝑒𝑜𝑚 𝑝 is 
NOT a memory less 
distribution.  

25
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Memoryless Distribution for Continuous Random Variables

The continuous analogue of the discrete geometric 
𝑔𝑒𝑜𝑚 𝑝 distribution is the exponential distribution.

PDF 𝑓 (𝑥) and CDF 𝐹 𝑥 of an exponentially 
distributed random variable are -

( ) 0

( ) 1 0

x
X

x
X

f x e x

F x e x





 



   

    

0.5  0.5 

with Mean = 1/𝜇 and Variance = 1/ 𝜇2

Prove that 𝑃 𝑋 > 𝑇 + 𝑆 𝑋 > 𝑆 = 𝑃 𝑋 > 𝑇 in this case which shows that the exponential distribution is 
a Memoryless Distribution .   

Shown in the next slide

26



31-03-2022

27

Exponential Distribution         𝑋~exp (𝜇) has pdf and cdf as given earlier 

( ) 0

( ) 1 0

x
X

x
X

f x e x

F x e x





 



   

    

with Mean = 1/𝜇 and Variance = 1/ 𝜇2

and 𝑃 𝑋 > 𝑡 = 1 − 𝐹 𝑡 = 𝑒 ,  𝑡 > 0

It follows that -  
( )

( )
|

( )

( )
t s

t
s

P X t s
P X t s X s

P X s

e
e P X s

e






 




 
   



   

The length of phone calls is commonly modelled as having an exponential distribution!

So, now you know why your brother/sister/son/daughter never seem to end their phone calls, when you 
also want to use the landline at home

27
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The gap between successive cars on a
highway is also modelled as having an
exponential distribution.

What implication does it have for what
happens when “a chicken wants to cross
the road”.

“Why should the chicken never be in a
hurry to cross the road? ”

Because he/she will always find a gap in
the traffic which is as large as anything
he/she wants and then should use that to
cross the road safely!

28
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Correspondence between the Geometric Distribution for Discrete Random Variables and the 
Continuous Distribution for Continuous Random Variables

Continuous
𝑇~exp (𝜇)

Discrete
𝑁~𝑔𝑒𝑜𝑚 (𝑝)

0 𝑻

𝜟 =
𝑻

𝑵

Consider a system which you start observing at time 𝑡 = 0 where the event that you are observing for happens at 
time 𝑡 = 𝑇.
For the Continuous Time model, let us say we observe “No event in time (0, 𝑇) and then the event happening in 
(𝑇, 𝑇 + 𝑑𝑇) with probability 𝑒 𝜇(𝑑𝑇)
In the Discrete Time Model, this would be equivalent to saying that the event does not happen for 𝑁 slots and then 
happens in the (𝑁 + 1)𝑡ℎ slot. Note that the probability 𝑝 of the event happening in a slot will be 𝑝 = 𝜇Δ =

while the probability of the event not happening will be (1-𝑝). With 𝑁 → ∞, Δ → 0, these will be the only two 
things that can happen in a slot, i.e., multiple events cannot occur (their probability will tend to zero))

0 𝑻
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Continuous Case

𝑒 𝜇(𝑑𝑇)

Discrete Case     𝑝 = 𝜇Δ =

1 −
𝜇𝑇

𝑁

𝜇𝑇

𝑁

Probability of No Event in (0, 𝑇) and the event happening in (𝑇, 𝑇 + 𝑑𝑇) or equivalently in the interval 
(𝑇, 𝑇 + ∆𝑇)

  or  

1
N

T

T
N T dT

N

T
e

N
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A random variable 𝑋, taking on one of the values 0, 1, 2,..., is 
said to be a Poisson random variable with parameter 𝜆, 𝜆 > 0, 
if its probability mass function is given by –

𝑿~𝑷𝒐𝒊𝒔𝒔𝒐𝒏 𝝀         𝑃 𝑋 = 𝑖 = 𝑝 = 𝑒
𝜆

𝑖!
,   𝑖 = 0, 1, … … . ∞

Poisson Random Variable    
𝝀 = 𝟒

0 0

1
!

i

i
i i

p e
i

  


 

  

Mean: 𝑋 = ∑ 𝑖𝑝 = 𝜆

Second Moment: 𝑋 = ∑ 𝑖 𝑝 = 𝜆 + 𝜆

Variance:   𝜎 = 𝑋  − 𝑋 = λ
The Poisson distribution is very popular 
in analytical modelling and simulations 
as it is described by just one variable 𝜆.
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Properties of the Poisson Distribution

Homogeneity Independence

The arrival rate 𝜆 is constant with respect to 
time. The expected number of arrivals in any 
given interval of time Δ𝑡 is 𝜆Δ𝑡.
(Weak Stationarity also holds ⇒ Mean and 
Variance does not change with time)

The number of arrivals in disjoint intervals are 
independent of each other. 
The number of arrivals in one interval will not 
have any effect on the number of arrivals in 
any other disjoint interval

We show in the next slide that these properties are enough to prove that the arrival process for this will 
have the Poisson distribution
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Let 𝑁 be the number of arrivals in [𝜏, 𝜏 + 𝑡], 𝜏>0.      Homogeneity ⇒ 𝐸(𝑁 )= 𝜆𝑡

Divide 𝑡 into 𝑛 non-overlapping intervals with 𝑛 → ∞ and let 𝑀 be the number of arrivals (0 or 1; 1 with 
probability 𝑝 ) arriving in the 𝑗 interval. 

We can also conclude that for any 𝑗,   

𝑃 𝑀 = 1 = λ ,     𝑃 𝑀 = 0 = 1 − λ

and   𝑃 𝑀 > 1 → 0 as and higher powers of 𝑛 and can be ignored as 𝑛 → ∞

𝜏 𝜏 + 𝑡

∆=
𝑡

𝑛

𝑃(one arrival)=λ

𝑃(no arrival)=1-λ

𝑃(𝑘 arrivals in [𝜏, 𝜏 + 𝑡]) =𝑃
= Probability that any 𝑘 of the 𝑛 slots 

have an arrival and there are no 
arrivals in the other (𝑛 − 𝑘) slots

 

!
1

!( )!

as
!

 

k n

t

k

n

n t t

k n k n n

t
e

n
n










                 



  


Poisson 

Distribution

See next slide for the steps, if needed
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Binomial → Poisson The Poisson Distribution may be used as an approximation to the
Binomial Distribution with parameters (𝑛, 𝑝) when 𝑛 is large and 𝑝 is
small and 𝜆 = 𝑛𝑝 remains the mean of both the distributions

!
( ) (1 )

( )! !

!
1

( )! !

1
( 1).....( 1

!

)

!
1

i n

i n i

n

i

ii

i

i

n

n i i n n

n

n
P X i

n n i n
n i

n

p p
n i i

e as n
i



 














  


           

        
  








For large 𝑛 and small 𝑝, we have -

1

( 1)......( 1)
1

1 1

n

i

i

e
n

n n n i

n

n





   
 

  


   
  These were also the 

approximations needed 
in the previous slide
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Another useful property of 
the Poisson Distribution

The sum of Independent Poisson random 
variables is also a Poisson random variable

Let and 
be two Independent Poisson Random 
Variables, i.e., 

Then 

The Sum of Independent Poisson Random Variables is also a Poisson 
Random Variable
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Proof:  Taken from 
https://llc.stat.purdue.edu/2014/4
1600/notes/prob1805.pdf

Phew!!!  

Remind me to show you later how a 
little bit of clever thinking will let you 
show this in about two and a half lines!!
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We saw that the sum of two Independent Poisson random variables is 
also a Poisson random variable

Note that this result is not limited to the sum of just two independent 
random variables!

We can obviously extend this to 𝑁 independent random variables for 
𝑁 ≥ 2
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Uniform Distribution (Discrete)      𝑋~𝑈𝑛𝑖𝑓(𝑓 1, 𝑚 )

 

1

22
2

1
or ( ) ( ) , [1, ]

1 ( 1)
( )

2

1
( )

12

i X

m

x

p p i P X i i m
m

m
E X X x

m

m
Var X X X



    

    
 


  



Roll a six-sided dice to get one of {1, 2, 3, 4, 5, 6} each with probability  =
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Poisson Arrivals have Exponentially Distributed Inter-Arrival Times

𝑇𝑖𝑚𝑒

Inter-Arrival 
Time 𝑇

Poisson 
Arrivals

Poisson Arrivals come from a Poisson Process with rate 𝜆

⇒      𝑃 𝑘 𝑎𝑟𝑟𝑖𝑣𝑎𝑙𝑠 𝑖𝑛 𝑎 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑇

= 𝑒
( )

!
for 𝑘 = 0, 1,2, … . ∞

𝑘~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑇)

The Inter-Arrival Times are independent, exponentially 
distributed random variables which have identical 
distributions with mean 1/𝜆

⇒       𝑓 𝑡 = 𝜆𝑒     0 ≤ 𝑡 < ∞

𝑇~exp (𝜆)

If phone calls are exponentially distributed in length, then they are also assumed to be coming from a Poisson process
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Compound Probability Distribution

Consider the random variable 𝑌 defined as 

   𝑌 = 𝑋 + 𝑋 + ⋯ + 𝑋
where –

(i)    𝑁 is a random number 
(ii)   𝑋 , 𝑖 = 1,2, … , 𝑁 are independent, identically distributed (i.i.d.) random variables with  c.d.f. 𝐹 ,    

mean 𝜇 and variance 𝜎
(iii)  Each 𝑋 is independent of 𝑁 𝑁 is a discrete r.v. with mean 𝜇 and variance 𝜎

Using the Law of Total Probability, the Compounded Distribution of  𝑌 is given as -

  ( )
1 2

0 0

( ) ( ) ..... | ( ) ( )n
Y N Y

n n

F y P Y y P X X X y N n P N n F P N n
 

 

           

where 𝐹( ) is the n-fold convolution of 𝐹

𝐹
( )

= 𝐹 ∗ 𝐹 ∗ ⋯ ∗ 𝐹 ( ) ( ) ( )
k

Z X Y X Y

P Z z P X k P Y z k
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Consider the first two moments of a random variable with this compound distribution
𝑌 = 𝑋 + 𝑋 + ⋯ + 𝑋 𝑋 𝑠 are i.i.d.

 

0

0 0

( ) ( | )

( | ) ( )

( ) ( ) ( )

N Y

n

X
n n

X N

E Y E E Y N

E Y N n P N n

nE X P N n nP N n
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2 2 2

( ) ( | ) ( | )

( ) ( )

( )

( )

N Y N Y

N X N X

N X N X

N X X N

N X X N

Var Y E Var Y N Var E Y N

E NVar X Var NE X

Var x Var N

Var N

 

  

   

 

 

 

 

 

    
From Eq. 2.19 "Law of Total Variance"

  ( ) | |X Y X YVar Y E Var Y X Var E Y X   
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Negative Binomial (Discrete) Distribution  𝑋~𝑁𝐵 𝑘; 𝑟, 𝑝
also known as the Pascal Distribution    𝑋~𝑃𝑎(𝑘; 𝑟, 𝑝)

The negative binomial experiment is almost the same as a binomial experiment with one difference: a binomial experiment 
has a fixed number of trials but the number of trials is not fixed in the negative binomial case.

Recall that if the following five conditions are true, then the experiment is binomial:

1. Fixed number of 𝑛 trials  2. Each trial is independent             3. Only outcomes are Success/Failure 

4. Probability of Success (𝑝) for each trial is constant 5. Random variable 𝑋 = the number of successes.

The negative binomial is similar to the binomial with two differences (specifically to numbers 1 and 5 in the list 
above):

•The number of trials, 𝑛 is not fixed.

•Random variable 𝑋 differenty defined (see subsequent slides)

See graphical description 
in the next slide
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Negative Binomial (Discrete) Distribution  𝑋~𝑁𝐵 𝑘; 𝑟, 𝑝
Following the notation in the 
online notes provided to you

1

𝑟 + 𝑘 𝑡ℎ

trial

𝑃 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑝
𝑃 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 1 − 𝑝

First 
trial

𝑟 + 𝑘 − 1 trials here

Of these (𝑟 + 𝑘 − 1) trials, there are 𝑘 failures and 𝑟 − 1 successes

The experiment being done here is to keep trying until we 
get 𝑟 successes
If we define our random variable 𝑋 to be the number of 
failures that we will encounter in that case, then -

1
( ) (1 )k rr k

P X k p p
k

  
   

 

The last one at 𝑟 + 𝑘 is a 
success; it is the 𝑟𝑡ℎ success

Read the example on page 58 of the lecture material given for this module with this figure in front of you
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1
𝑃 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 𝑝

𝑃 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 1 − 𝑝

𝑟 + 𝑘 − 1 trials here

Of these (𝑟 + 𝑘 − 1) trials, there are 𝑘 failures and 𝑟 − 1 successes

Let’s try to think a little differently!

𝑌: The number of trials for 𝑟 successes with the 
last trial being a success

Using the results of the previous slide, we can 
easily conclude  that -

1
( ) (1 )k rr k

P X k p p
k

  
   

 

1
( ) (1 ) , 1, 2....n r rn

P Y n p p n r r r
n r

 
        

This is the probability distribution (actually, the Probability
Mass Function) for the number of trials 𝑛 needed for 𝑟
successes when the last trial is a success and the probability of
success in any one trial is 𝑝.
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Example of Page 50 P(Pen wins a rally)=𝑝=0.6          P(Hart wins a rally)=ℎ=0.4

Winning Patterns for Li Pen

20+0+1 20
20

0.6 (0.4) 0.6

20+1+1 21
20

0.6 (0.4) 0.6

20+2+1 22
20

0.6 (0.4) 0.6

……..
……..

20+5+1 25
20

0.6 (0.4) 0.6

……..
……..

20+19+1 39
20

0.6 (0.4) 0.6

20+20+1 40
20

0.6 (0.4) 0.6

Li Pen winning in 26 rallies, 20 of the 
first 25 and then one more, 21/5

Li Pen winning in 41 rallies, 20 of the 
first 40 and then one more, 41/20

Li Pen winning in 21 rallies, 20 of the 
first 20 and then one more, 21/0

Deuce not considered 
in this model
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No Deuce in this model!

How to calculate the probabilities of Li
Pen winning with scores like 22-20, 23-
21, 24-22….?

If you deuce at 29-29 then the game
would end at 30-29.

Example of Page 50
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Example (page60): System Failure because of the failure of both Main 
Power Unit (MPU) and Auxiliary Power Unit (APU)

Assume that the time to failure of both are independent exponentially distributed
(i.i.d.) random variables (r.v.s) with mean 1/𝜇 minutes.
The mode of operation followed is described below.

“The system is started with the MPU. When the MPU fails, we immediately move to
the APU while the MPU is being repaired. We need 𝜏 minutes (FIXED) to repair the
MPU and put it back in service. If the APU fails before the MPU is fixed, then the
system fails. If we can repair the MPU before the APU fails, then the system resumes
normal operation as before. In that case, there is no system failure until the next time
the failure sequence repeats itself.”
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𝑡 = 0
MPU

M
PU

 F
ai

ls

System Starts

APU

MPU Repaired 
and Put Back 

in Service

MPU

Normal Operating 
Scenario 

𝜏 minutes (FIXED) 
needed to repair MPU

APU on Stand-By APU on Stand-By

𝑡 = 0
MPU

M
PU

 F
ai

ls

System Starts

APU on Stand-By

𝜏 minutes (FIXED) 
needed to repair MPU

AP
U

 F
ai

ls

System
Failure

System Failure 
Scenario 

Operation Scenarios
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𝑋: Time (random) to First System Failure,    𝜏: Time (Fixed) to repair failed MPU and put it back in service
𝐿 : Operating Time of MPU,  𝐿 : Operating time of APU   Both are i.i.d. exponentially distributed with mean 1/𝜇
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System Fails when 𝐿 ≤ 𝜏
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System does not fail when 𝐿 > 𝜏

Why?

Putting everything together -

     

 

( ) | 1 |

1 1
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2
( )

(1 )

e
E X

e














Check this to see what 
happens when you do 
𝜏 → 0 and 𝜏 → ∞
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The actual problem in the book is a lot simpler!

• It is stated that “The exponential model is often used as the probability model for the 
time until a rare event” 

• Also, if the random variable 𝑋 is the time until the first system failure, then under fairly 

general conditions, 𝑃(𝑋 > 𝑡) ≈ 𝑒 ( ) holds

• In this problem, you are given that 𝐸 𝑋 = 500 hours.

• Therefore, the probability of failure after 100 hours is     𝑃 𝑋 > 100 ≈ 𝑒 = 0.8187
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